
Deep Learning for
Natural Language Processing

Roee Aharoni
Bar-Ilan University NLP Lab

Berlin PyData Meetup, 10.8.16

An Introduction

Motivation

ACL

0

12.5

25

37.5

50

2012 2013 2014 2015 2016

0
5

11

35

45

1 2
6 8

12

"Deep" "Neural"
EMNLP

0

15

30

45

60

2012 2013 2014 2015 2016

0
5

14

35

57

0 2 4 6
12

"Deep" "Neural"

of mentions in paper titles at top-tier annual NLP conferences (ACL,
EMNLP) from 2012 to 2016:

What is deep learning?

“A family of learning methods that
use deep architectures to learn

high-level feature representations”

What is deep learning?

“A family of learning methods that
use deep architectures to learn

high-level feature representations”

A basic machine learning setup

• Given a dataset of: training examples,

• input:

• output:

• Learn a function to predict correctly on new
inputs.

• step I: pick a learning algorithm (SVM, log. reg., NN…)

• step II: optimize it w.r.t a loss, i.e:

Logistic regression - the “1-layer” network
• Model the classier as:

• Learn the weight vector: using gradient-descent (next
slide)

• is a non-linearity, e.g. the sigmoid function (creates
dependency between the features, maps to [0,1]):

�(z) = 1
1+e�z

f(x) = �(wT · x) = �(
X

i

wixi)

w 2 Rd

f(x)

Training (log. regression) with gradient-descent
• Define the loss-function (squared error, cross entropy…):

• Derive the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• start with a random weight vector

• repeat until convergence:

• is the learning rate, which is a hyper-parameter�

Stochastic gradient descent (SGD)
Instead of deriving the loss on all training examples per
iteration, use only a sub-set of (random) examples per
iteration (mini-batch):

Multi layer perceptron (MLP) - a multi-layer NN

“high level” features

• Model the classifier as:

• Can be seen as multilayer logistic regression

• a.k.a feed-forward NN

Training (an MLP) with Backpropagation:

Training (an MLP) with Backpropagation:
• Assume two outputs per input:

• Define the loss-function per example:

• Derive the loss-function w.r.t. the last layer:

• Derive the loss function w.r.t. the first layer:

• Update the weights:

• A deeper architecture is more expressive than a shallow one given same
number of nodes [Bishop, 1995]

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient nodes)
• >3-layer nets can do so with fewer nodes

Why deeper is better?

Example - the XOR problem:

• Enable variable length inputs (sequences)

• Modeling internal structure in the input or output

• Introduce a “memory/context” component to utilize history

Recurrent Neural Networks (RNN’s)

Output

Hidden

InputContext

• “Horizontally deep” architecture

• Recurrence equations:

• Transition function:

• Output function: , usually implemented as softmax

Recurrent Neural Networks (RNN’s)

yt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)

• Enables to output a probability distribution over k possible classes

• can be seen as trying to minimize the cross-entropy between the
predictions and the truth

• d usually holds log-likelihood values

The Softmax Function

p(x = i) = eyi
kP

j=1
eyj

• As usual, define a loss function (per sample, through time):

• Derive the loss function w.r.t. parameters , starting at :

• Backpropagate through time - sum and repeat for , until :

• Eventually, update the weights:

Training (RNN’s) with Backpropagation Through Time

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥

• In order to cope with the vanishing gradients problem in RNN’s, more
complex recurrent architectures emerged:

• Long Short Term Memory [Hochreiter & Schmidhuber,1999]

• Gated Recurrent Unit [Cho et al, 2014]

• Most of the recent RNN works utilize such architectures

Vanishing gradients, LSTM’s and GRU’s

LSTM walkthrough in 4 steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a hidden state
used for predicting an output

• Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:

LSTM walkthrough in 4 stepsLSTM walkthrough in 4 steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a hidden state
used for predicting an output

• Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

LSTM walkthrough in 4 stepsLSTM walkthrough in 4 steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a hidden state
used for predicting an output

• Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

LSTM walkthrough in 4 stepsLSTM walkthrough in 4 steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a hidden state
used for predicting an output

• Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

Ⅲ
compute current

hidden state
using output gate
and memory cell

LSTM walkthrough in 4 stepsLSTM walkthrough in 4 steps
• Processes a variable length input sequence:

• At any time step, holds a memory cell and a hidden state
used for predicting an output

• Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:

Ⅰ
compute current

input, forget,
output gates and

memory cell
update

Ⅱ
compute current

memory cell
using input and

forget gates

Ⅲ
compute current

hidden state
using output gate
and memory cell

Ⅳ compute current
output probabilities

for prediction by
using softmax over

the hidden state

LSTM walkthrough in 4 steps

LSTM walkthrough in 4 steps

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

LSTM walkthrough in 4 steps

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

LSTM walkthrough in 4 steps

ht

Ⅲ
compute current

hidden state
using output gate
and memory cell

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

LSTM walkthrough in 4 steps

Ⅳ compute current
output probabilities

for prediction by
using softmax over

the hidden state

ht

Ⅲ
compute current

hidden state
using output gate
and memory cell

inputforget outputmemory

ft ĉt otit

Ⅰ
compute current

input, forget,
output, memory

gate values

ht-1

ct-1

Ⅱ

ft⊙ct-1

it⊙ĉt

ct

compute current
memory cell

using input and
forget gates

• Number of hidden layers: 10 (or more) rather than 2-3
• Number of output nodes: 5000 (or more) rather then 50
• Better optimization strategies, heuristics (layer-by-layer

pre-training, dropout…)
• Much more computation power

Why now? Today vs. 80’s-90’s

Neural Network Models for Natural Language
Processing

• A language model measures how likely is the
sentence:

• Usually modeled as a product of conditionals:

• The “conventional” approach: assume a Markov chain of
order n and count:

What is a Language Model?
p(wN

1)

w

N
1 = x1, x2, ..., xN

p(x1, x2, . . . , xN) =
TQ

t=1
p(xt | x1, ..., xt�1)

p(x1, x2, . . . , xN) =
TQ

t=1
p(xt | xt�n, ..., xt�1)

p(x
t

| x
t�n

, . . . , x

t�1) =
count(xt�n,...,xt�1,xt)
count(xt�n,...,xt�1)

What is a Language Model?
Lets compute:

• uni-gram LM:

• bi-gram LM:

• tri-gram LM:

p(i, would, like, to, ..., < /s >)

p(i)p(would)p(like)...p(< /s >)

p(i)p(would | i)p(like | would)...p(< /s >| .)

p(i)p(would | i)p(like | i, would)...p(< /s >| work, .)
Perplexity - The lower, the better

• Data sparsity - many n-grams do not appear in the training data

• Can be handled by smoothing, back-off

• Lack of generalization

• “chases a cat”, “chases a dog”, “chases a rabbit”

• “chases an ostrich”?

The conventional approach - Issues

• Data sparsity - many n-grams do not appear in the training data

• Can be handled by smoothing, back-off

• Lack of generalization

• “chases a cat”, “chases a dog”, “chases a rabbit”

• “chases an ostrich”?

The conventional approach - Issues

Language Modeling with MLP

• Start with one-hot
encoding of each word

• Learn continuous space
word representations

• Non-Linear hidden Layer

• Output probabilities
using the Softmax
function

Language Modeling with MLP

• Experiment details:

• vocabulary size: 128k words

• training text: 50M words

• development corpus: 39k words

• evaluation corpus: 35k words

• Network structure:

• projection layer: 300 nodes (per
word)

• hidden layer: 600 nodes

• total amount of params:

128k · 300 + 600 · 128k = 115M

• MLP LM’s are still limited in history (use n-gram assumption)
• We would like to use RNN’s to model the entire sentence “at once”
• Every input is a 1-hot vector, every output is the LM probabilities as
softmax

Language Modeling with RNN’s

• RNN’s provide a significant
improvement over previous
models

• A price to pay: very long
training time

• A solution: use both, but train
on different size data sets

Language Modeling with RNN’s

• As we saw previously, a continuous word representation is learned for each
word as part of the network training (many times referred as word embedding)

• These representations were shown as a successful tool for various tasks such
as word similarity and word analogies:

Distributed word representations using word2vec

• In word2vec, two similar models are introduced:

• CBOW (left) and skip-gram (right), both can be seen as MLP’s
• Have been shown to approximate the PMI matrix [Levy & Goldberg, 2015]

word2vec - how it works?

“Conventional” Statistical Machine Translation
Start with parallel text:

“Conventional” Statistical Machine Translation
Learn the alignments:

“Conventional” Statistical Machine Translation
Extract phrase pairs:

“Conventional” Statistical Machine Translation
Use a log linear model combination to score hypotheses:

“Conventional” Statistical Machine Translation
Beam search to output best hypothesis

“Hybrid” Statistical Machine Translation

• Use an MLP to train a translation
model

• Inputs are 1-hot encodings of the
words in the aligned source
language window

• Combine this model with the rest
while decoding or rescoring

“Hybrid” Statistical Machine Translation

• Another option: Bilingual LM

• Inputs are 1-hot encodings of the words
in the aligned source language window
and previous words in the translation
hypothesis

• ACL 2014 Best Paper [Devlin et al, 2014]

Neural Machine Translation

Forcada&Ñeco, 1997;

Castaño&Casacuberta, 1997;

Kalchbrenner&Blunsom,

2013; Sutskever et al., 2014;

Cho et al., 2014

Neural Machine Translation - seq2seq Encoder

1. 1-hot vectors

2. continuous representation (word
embeddings)

3. recursively read the words using
an RNN (LSTM/GRU)

4. output a sentence representation
for the decoder

Neural Machine Translation - seq2seq Decoder

1. recursively update the
memory

2. compute the next word
probabilities

3. sample the next word
(sometimes using beam-
search)

Neural Machine Translation - Attention

• Pros:
• Neural network models provide state of the art results on many
tasks

• Continuous representations (rather then 1-hot vectors) -
generalize better

• Better modeling of sequences and context using recurrent
architectures

• Cons:
• Lots of hyper-parameter tuning
• Harder to interpret model parameters
• Usually a very long training time, computationally expensive

Summary

How Can I Start?

• Y. Goldberg, A Primer on Neural Network Models
for Natural Language Processing

• PyCNN Tutorial (+IPython Notebooks!)

• Slides are available at: www.roeeaharoni.com

http://u.cs.biu.ac.il/~yogo/nnlp.pdf
https://github.com/clab/cnn/tree/master/pyexamples
http://www.roeeaharoni.com

Questions?

You are invited! (when in Tel Aviv ;)

http://www.meetup.com/The-Israeli-Natural-Language-Processing-Meetup/

References
• Y. Goldberg, A Primer on Neural Network Models for Natural

Language Processing

• K. Cho, Natural Language Understanding with Distributed
Representation

• K. Duh, Deep Learning Tutorial at DL4MT winter school

• H. Ney, Language Modeling and Machine Translation using
Neural Networks

• C. Olah, Understanding LSTM Networks

• C. Manning, Computational Linguistics and Deep Learning

http://u.cs.biu.ac.il/~yogo/nnlp.pdf
http://arxiv.org/pdf/1511.07916v1.pdf
https://drive.google.com/file/d/0B32DIMi7asUeTmpDS0xqM0o3MlE/view
https://drive.google.com/file/d/0B32DIMi7asUeY3ZJQnZ2cjF1Vmc/view
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00239

