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A basic machine learning setup

• Given a dataset of:                                  training examples, 

• input:  

• output:  

• Learn a function                  to predict correctly on new 
inputs. 

• step I: pick a learning algorithm (SVM, log. reg., NN…) 

• step II: optimize it w.r.t a loss, i.e:    



Logistic regression - the “1-layer” network
• Model the classier as: 

• Learn the weight vector:            using gradient-descent (next 
slide)   

•    is a non-linearity, e.g. the sigmoid function (creates 
dependency between the features, maps         to [0,1]):
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Training (log. regression) with gradient-descent
• Define the loss-function (squared error, cross entropy…): 

• Derive the loss-function w.r.t. the weight vector, w: 

• Perform gradient-descent: 

• start with a random weight vector 

• repeat until convergence:  

•    is the learning rate, which is a hyper-parameter�



Stochastic gradient descent (SGD)
Instead of deriving the loss on all training examples per 
iteration, use only a sub-set of (random) examples per 
iteration (mini-batch):



Multi layer perceptron (MLP) - a multi-layer NN

“high level” features

• Model the classifier as:  

• Can be seen as multilayer logistic regression 

• a.k.a feed-forward NN



Training (an MLP) with Backpropagation:



Training (an MLP) with Backpropagation:
• Assume two outputs per input:  

• Define the loss-function per example: 

• Derive the loss-function w.r.t. the last layer: 

• Derive the loss function w.r.t. the first layer:  

• Update the weights: 



• A deeper architecture is more expressive than a shallow one given same 
number of nodes [Bishop, 1995] 

• 1-layer nets (log. regression) can only model linear hyperplanes 
• 2-layer nets can model any continuous function (given sufficient nodes) 
• >3-layer nets can do so with fewer nodes

Why deeper is better?

Example - the XOR problem:



• Enable variable length inputs (sequences) 

• Modeling internal structure in the input or output 

• Introduce a “memory/context” component to utilize history

Recurrent Neural Networks (RNN’s)

Output

Hidden

InputContext



• “Horizontally deep” architecture 

• Recurrence equations: 

• Transition function: 

• Output function:                     , usually implemented as softmax

Recurrent Neural Networks (RNN’s)

yt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)



• Enables to output a probability distribution over k possible classes 

• can be seen as trying to minimize the cross-entropy between the 
predictions and the truth 

• d    usually holds log-likelihood values

The Softmax Function

p(x = i) = eyi
kP

j=1
eyj



• As usual, define a loss function (per sample, through time                     ): 

• Derive the loss function w.r.t. parameters    , starting at           : 

• Backpropagate through time - sum and repeat for         , until          : 

• Eventually, update the weights: 

Training (RNN’s) with Backpropagation Through Time 

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥



• In order to cope with the vanishing gradients problem in RNN’s, more 
complex recurrent architectures emerged: 

• Long Short Term Memory [Hochreiter & Schmidhuber,1999] 

• Gated Recurrent Unit [Cho et al, 2014] 

• Most of the recent RNN works utilize such architectures

Vanishing gradients, LSTM’s and GRU’s
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• Processes a variable length input sequence:  

• At any time step, holds a memory cell       and a hidden state      
used for predicting an output   

• Has gates controlling the extent to which new content should be 
memorized (input gate), old content should be erased (forget gate), 
and current content should be exposed (output gate). More formally:
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LSTM walkthrough in 4 steps
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• Number of hidden layers: 10 (or more) rather than 2-3 
• Number of output nodes: 5000 (or more) rather then 50 
• Better optimization strategies, heuristics (layer-by-layer 

pre-training, dropout…) 
• Much more computation power

Why now? Today vs. 80’s-90’s 



Neural Network Models for Natural Language 
Processing



• A language model           measures how likely is the 
sentence: 

• Usually modeled as a product of conditionals: 

• The “conventional” approach: assume a Markov chain of 
order n and count:   

What is a Language Model?
p(wN

1 )

w

N
1 = x1, x2, ..., xN

p(x1, x2, . . . , xN ) =
TQ

t=1
p(xt | x1, ..., xt�1)

p(x1, x2, . . . , xN ) =
TQ

t=1
p(xt | xt�n, ..., xt�1)

p(x
t

| x
t�n

, . . . , x

t�1) =
count(xt�n,...,xt�1,xt)
count(xt�n,...,xt�1)



What is a Language Model?
Lets compute:  

• uni-gram LM: 

• bi-gram LM: 

• tri-gram LM:

p(i, would, like, to, ..., < /s >)

p(i)p(would)p(like)...p(< /s >)

p(i)p(would | i)p(like | would)...p(< /s >| .)

p(i)p(would | i)p(like | i, would)...p(< /s >| work, .)
Perplexity - The lower, the better



• Data sparsity - many n-grams do not appear in the training data 

• Can be handled by smoothing, back-off 

• Lack of generalization  

• “chases a cat”, “chases a dog”, “chases a rabbit” 

• “chases an ostrich”?  

The conventional approach - Issues
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Language Modeling with MLP

• Start with one-hot 
encoding of each word 

• Learn continuous space 
word representations 

• Non-Linear hidden Layer 

• Output probabilities 
using the Softmax 
function



Language Modeling with MLP

• Experiment details:  

• vocabulary size: 128k words 

• training text: 50M words 

• development corpus: 39k words 

• evaluation corpus: 35k words 

• Network structure: 

• projection layer: 300 nodes (per 
word) 

• hidden layer: 600 nodes 

• total amount of params:  

128k · 300 + 600 · 128k = 115M



• MLP LM’s are still limited in history (use n-gram assumption) 
• We would like to use RNN’s to model the entire sentence “at once” 
• Every input is a 1-hot vector, every output is the LM probabilities as 
softmax

Language Modeling with RNN’s



• RNN’s provide a significant 
improvement over previous 
models 

• A price to pay: very long 
training time 

• A solution: use both, but train 
on different size data sets

Language Modeling with RNN’s



• As we saw previously, a continuous word representation is learned for each 
word as part of the network training (many times referred as word embedding) 

• These representations were shown as a successful tool for various tasks such 
as word similarity and word analogies:

Distributed word representations using word2vec



• In word2vec, two similar models are introduced: 

• CBOW (left) and skip-gram (right), both can be seen as MLP’s 
• Have been shown to approximate the PMI matrix [Levy & Goldberg, 2015]

word2vec - how it works?



“Conventional” Statistical Machine Translation
Start with parallel text:



“Conventional” Statistical Machine Translation
Learn the alignments:



“Conventional” Statistical Machine Translation
Extract phrase pairs:



“Conventional” Statistical Machine Translation
Use a log linear model combination to score hypotheses:



“Conventional” Statistical Machine Translation
Beam search to output best hypothesis



“Hybrid” Statistical Machine Translation

• Use an MLP to train a translation 
model 

• Inputs are 1-hot encodings of the 
words in the aligned source 
language window 

• Combine this model with the rest 
while decoding or rescoring



“Hybrid” Statistical Machine Translation

• Another option: Bilingual LM 

• Inputs are 1-hot encodings of the words 
in the aligned source language window 
and previous words in the translation 
hypothesis 

• ACL 2014 Best Paper [Devlin et al, 2014]



Neural Machine Translation

Forcada&Ñeco, 1997; 

Castaño&Casacuberta, 1997; 

Kalchbrenner&Blunsom, 

2013; Sutskever et al., 2014; 

Cho et al., 2014



Neural Machine Translation - seq2seq Encoder

1. 1-hot vectors 

2. continuous representation (word 
embeddings) 

3. recursively read the words using 
an RNN (LSTM/GRU) 

4. output a sentence representation 
for the decoder



Neural Machine Translation - seq2seq Decoder

1. recursively update the 
memory 

2. compute the next word 
probabilities 

3. sample the next word 
(sometimes using beam-
search)



Neural Machine Translation - Attention



• Pros: 
• Neural network models provide state of the art results on many 
tasks 

• Continuous representations (rather then 1-hot vectors) - 
generalize better 

• Better modeling of sequences and context using recurrent 
architectures 

• Cons: 
• Lots of hyper-parameter tuning  
• Harder to interpret model parameters 
• Usually a very long training time, computationally expensive

Summary



How Can I Start?

• Y. Goldberg, A Primer on Neural Network Models 
for Natural Language Processing 

• PyCNN Tutorial (+IPython Notebooks!) 

• Slides are available at: www.roeeaharoni.com

http://u.cs.biu.ac.il/~yogo/nnlp.pdf
https://github.com/clab/cnn/tree/master/pyexamples
http://www.roeeaharoni.com


Questions?



You are invited! (when in Tel Aviv ;)

http://www.meetup.com/The-Israeli-Natural-Language-Processing-Meetup/
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