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Votivation

# of mentions in paper titles at top-tier annual NLP conferences (ACL,
EMNLP) from 2012 to 2016:
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What is deep learning??

"A tamily of learning methods that
use deep architectures to learn
high-level feature representations”
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A basic machine learning setup

» Given a dataset of: (x(™,y(™)__1 5 m training examples,
e input: x{™M ¢ R
» output: y{™ = {0,1}

e Learn a function f : x — y to predict correctly on new
INnputs.

e step |: pick a learning algorithm (SVM, log. reg., NN...)

» step II: optimize it w.r.t a loss, i.e: miny >, (fu(x'™) — y{™)?



Logistic regression - the “1-layer’ network

e Model the classier as:

f(@)=0c(w" z)=0() wiz;)

» Learn the weight vector:w € R*using gré”dient—deseent (next
slide)

* 0is anon-linearity, e.qg. the sigmoid function (creates
dependency between the features, maps f(x)to [0,1]):
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Training (log. regression) with gradient-descent
e Define the loss-function (squared error, cross entropy...):
Loss(w) = %Zm(a(wa(’")) — y(m)2
* Derive the loss-tunction w.r.t. the weight vector, w:
Vwloss =3 [o(wTx(M) — y(m]g'(wT x(m))x(m)
e Perform gradient-descent:
e start with a random weight vector

+ repeat until convergence:  w <+ w — y(V,, Loss)

* Vis the learning rate, which is a hyper-parameter



Stochastic gradient descent (SGD)

Instead of deriving the loss on all training examples per
iteration, use only a sub-set of (random) examples per
iteration (mini-batch):

W< W — v(ﬁ D meB Error(™ x o/ (in{™)) x x(m))

Stochastic Gradient N
Descent (SGD),——"""' *

Gradient Descent



Multi layer perceptron (MLP) - a multi-layer NN

e Model the classifier as:

f(x) = U(Ej wj - hj) = U(Zj wj - a(Q_; wijXi))

 Can be seen as multilayer logistic regression

 a.k.afeed-forward NN @
W; wq W w3
hj ‘high level” features




Training (an MLP) with Backpropagation:

Adjust weights
Predict f(x(™)




Training (an MLP) with Backpropagation:

Assume two outputs per input: 7 @ @
Define the loss-function per example: 4,
ONOPO

Loss = 3", % [a(ink) — yi]?

Derive the loss-function w.r.t. the last layer:

\
@gv
i
/

OLoss __ Oloss Oing, __ 5 a(Ej wikhj) 5.h:
Owjx — 0Jing Owje k Owiji — Ukl

Derive the loss function w.r.t. the first layer:

OLoss __ OLloss dinj __ 5,8(21' WiiXi) X
6W,‘J' o ainj Bw,j | aW,'j I

Update the weights: w <— w — y(V, Loss)



Why deeper is better?

* A deeper architecture is more expressive than a shallow one given same
number of nodes [Bishop, 1995]

* 1-layer nets (log. regression) can only model linear hyperplanes
 2-layer nets can model any continuous function (given sufficient nodes)
* >3-layer nets can do so with fewer nodes

Example - the XOR problem: z®y=(zVy)A-(zAy)
Hidden Layer
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Recurrent Neural Networks (RNN’s)

 Enable variable length inputs (sequences)
 Modeling internal structure in the input or output

e Introduce a “memory/context” component to utilize history

O00000000
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Context Input




Recurrent Neural Networks (

* "Horizontally deep” architecture

* Recurrence equations:

RNN’s)

* Transition function: hy = H(hi—1,2¢) = tanh(Wxy_1 + Uhy_1 + D)

 Qutput function: y: = Y (ht), usually implemented as softmax

yt yl yz yt-l yt
T T T ‘ T
ht — hl > h2 —> . . —> ht-l o ht >
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The Softmax Function

* Enables to output a probability distribution over k possible classes

e can be seen as trying to minimize the cross-entropy between the
predictions and the truth

* Y; usually holds log-likelihood values




Training (RNN’s) with Backpropagation Through Time

As usual, define a loss function (per sample, through time t =1,2,...,T):

T
Loss = J(O,x) = — ) J(O,x)
t=1

Derive the loss function w.r.t. parameters ©, starting at ¢t =1~
_ 9J¢
VO = 52
Backpropagate through time - sum and repeat for¢ — 1, until t = 1:
0J
—_ | t

Eventually, update the weights:

© =9V0O
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Vanishing gradients, LSTM’s and GRU'’s

 [n order to cope with the vanishing gradients problem in RNN’s, more
complex recurrent architectures emerged:

* Long Short Term Memory [Hochreiter & Schmidhuber,1999]
» Gated Recurrent Unit [Cho et al, 2014]

e Most of the recent RNN works utilize such architectures




LSTM walkthrough

Processes a variable length input sequence: x = (X1,X2, - ,Xn)

At any time step, holds a memory cell €¢; and a hidden state h;
used for predicting an output

Has gates controlling the extent to which new content should be
memorized (input gate), old content should be erased (forget gate),
and current content should be exposed (output gate). More formally:
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LS TM walkthrough in 4 steps

plxesr = wixy, -+, x;) = explu(w,hy))/Z
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Why now?”? Today vs. 80's-90’s

 Number of hidden layers: 10 (or more) rather than 2-3
* Number of output nodes: 5000 (or more) rather then 50

» Better optimization strategies, heuristics (layer-by-layer
pre-training, dropout...)

OOOOOOOO

* Much more computation power

OOOOOOOO

OOOOOOOO
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Neural Network Models for Natural Language
Processing



What is a Language Model?

« A language model p(wy') measures how likely is the

sentence: wi' = T1,x2, ..., TN

 Usually modeled as a product of conditionals:
T

L CTRE Iy
=1

p(x17$27 JRIE 733.7\[) —
t
* The “conventional” approach: assume a Markov chain of
order n and count:
T
p(Te | Ty—ny ey Te—1)
=1

p(r1,29,...,TN) =
t

_count(Ti—p s Tr—1,Tt)
p(ft | Lt—my--- 7‘/1775—1) o count(:vt_n,...,cbt_l)




What is a Language Model?

Lets compute:

p(i, would, like, to, ..., < /s >)

e uni-gram LM:
p(i)plwould)p(like)...p(< /s >)

e pi-gram LM:

p(i)plwould | )p(like | would)...p(< /s > .)

e tri-gram LM:

word unigram | bigram | trigram | 4-gram

i 6.684 | 3.197 3.197 3.197
would 8.342 | 2.884 2.791 2.791
like 9.120 | 2.026 1.031 1.290

to 5.081 | 0.402 0.144 0.113
commend 15.487 | 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880
rapporteur 10.840 | 7.319 2.763 2.350
on 6.765 4.140 4.150 1.862

his 10.678 | 7.316 2.367 1.978
work 0.993 | 4816 3.498 2.394

: 4896 | 3.020 1.785 1.510

< /s> 4828 | 0.005 0.000 0.000
average 8.051 | 4.072 2.634 2.251
perplexity | 265.136 | 16.817 6.206 4.758

Perplexity - The lower, the better
p(i)p(would | i)p(like | i, would)...p(< /s >| work, .)



The conventional approach - Issues

* Data sparsity - many n-grams do not appear in the training data
* Can be handled by smoothing, back-off

* Lack of generalization
* “chases a cat’, “"chases a dog”, “chases a rabbit”

e “chases an ostrich”?
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Language Modeling with MLP

Py (wnlwn—2a Wy, - l)
OO000e0O000

e Start with one-hot
encoding of each word

e | earn continuous space
word representations

 Non-Linear hidden Layer

* Output probabilities
using the Softmax

function OO000OeO00 OCO0@O0000

Wy, -2 Whn-1



Language Modeling with MLP

* Experiment details:
e vocabulary size: 128k words
e training text: 50M words
e development corpus: 39k words
e evaluation corpus: 35k words
* Network structure:

 projection layer: 300 nodes (per
word)

 hidden layer: 600 nodes

e total amount of params:

128k - 300 4- 600 - 128k = 115M

Py (wn | wy

—29 wn~1)

OO000@0000

00000

OO0

OO0

OOO00COe000

OO00eOO000

Wn -2

Wyn-1

Approach PPL
4-gram count model 163.7
10-gram MLP 136.5

' 10-gram MLP with 2 layers 130.9




Language Modeling with

SNN's

 MLP LM'’s are still limited in history (use n-gram assumption)

* \We would like to use RNN'’s to model the entire sentence “at once”

e Every input is a 1-hot vector, every output is the LM probabillities as

softmax

(the) cat| 1s|

eat1ng| )

=%@—@—@

the cat

lS



Language Modeling with RNN's

« RNN's provide a significant Approach PPL
improvement over previous count model 163.7
models 10-gram MLP 136.5

RNN 125.2

* A price to pay: very long LSTM-RNN 107.8

training time 10-gram MLP with 2 layers | 130.9
LSTM-RNN with 2 layers | 100.5

e A solution; use both, but train
on different size data sets

Models PPL CPU Time (Order)
Count model 163.7 30 min
MLP 136.5 1 week

LSTM-RNN 107.8 3 weeks



Distributed word representations using word2vec

« As we saw previously, a continuous word representation is learned for each
word as part of the network training (many times referred as word embedding)

e These representations were shown as a successful tool for various tasks such
as word similarity and word analogies:

Country and Capital Vectors Projected by PCA

" China
Beijing

15 F Russia

Japan

Moscow
Turkey Ankara Tokyo
05+
Poland

0F Germany
France ‘Warsaw

. Berlin
05 } Naly Paris

0ece « Athens
-1 Spain o Rome

Madrid

-1.5 I Portugal Lisbon




word2vec - how it works?

e In word2vec, two similar models are introduced:
 CBOW (left) and skip-gram (right), both can be seen as MLP’s
e Have been shown to approximate the PMI matrix [Levy & Goldberg, 2015]

d Output layer
We must learn W and W’ -
xt" - )v[
Input layer
I:‘ x‘ y.‘
V-dim
Y
X
> CxVdim CxV-dim
Figure 1: This image demonstrates how Figure 2: This image demonstrates how
CBOW works and how we must learn Skip-Gram works and how we must

the transfer matrices learn the transfer matrices



“Conventional” Statistical Machine Translation

Start with parallel text:
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“Conventional” Statistical Machine Translation

Learn the alignments:

3':‘

source j

target i

mapping: 7 — ¢ = a;




“Conventional” Statistical Machine Translation

Extract phrase pairs:

source sentence 11 1% % 1 {1 11 L
gloss notation | VERY HAPPY WITH YOU AT TOGETHER .
target sentence | enjoyed my stay with you .

Viterbi alignment for F — E:

you * * |- W -

with *+ - - |ll - - H|-

stay © - |- - W -
=y ° ..
enjoyed| - H W

im - - : :

TEREYE

q = &

S



“Conventional” Statistical Machine Translation

Use a log linear model combination to score hypotheses:

Source Language Text

'

( Preprocessing ) Models

+ F ‘/( Language Models
Y

Global Search <—( Phrase Models

E = arg;;nax{p(E |F)} Word Models

_ T~
TN

Target Language Text

/ U

Reordermg Models

/




“Conventional” Statistical Machine Translation

Beam search to output best hypothesis

_H_EEEg.
yes
u ~
he \,- -y
goes | home
I \
- are — _
does not —>| go —PW
| B S
it
= | to

backtrack from highest scoring complete hypothesis



“Hybrid” Statistical Machine Translation

Use an MLP to train a translation | gbitl
p(e?v'fbi—l)
model

OOO0000O00

Inputs are 1-hot encodings of the
words in the aligned source
language window

Combine this model with the rest
while decoding or rescoring

OCOO00O | |OCO0e0O | | @OOOO0

.fbi—l fb,' .fb,'-{-l



Another option: Bilingual LM

Inputs are 1-hot encodings of the words
In the aligned source language window
and previous words in the translation
hypothesis

ACL 2014 Best Paper [Devlin et al, 2014]
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Neural Machine Translation

f=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

2 [ n [ |

E . n n

o F -

o

5 — n ] U
] T 7 o

Forcada&NeCO, 1 997, R AN A A AN N AN AL

Castano&Casacuberta, 1997;

Kalchbrenner&Blunsom,

2013; Sutskever et al., 2014;

Cho et al., 2014

.....................

Continuous-space

-of-K coding Word Representation

=

1
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e = (Economic, growth, has, slowed, down, in, recent, years, .



Neural Machine Translation - seg2seq Encoder

. 1-hot vectors g h (3) (4)
. continuous representation (word 2z
ombeddings) on wor B SR T SO S S

| Representaton

. recursively read the words using

an RNN (LSTM/GRU) T F S S S o o o
O F R

(

1-of-K coding W

. output a sentence representation
for the decoder

W,

[
||

[T ]

— N N

e = (Economic, growth, has, slowed, down, in, recent, years, .)



1.

Neural Machine Translation - seg2seq Decoder

f=(La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

p—

recursively update the : H F 0 (3)

Tﬁ.u o - = =
memory s H . =
$ . u - E
- O [
e F\@2)-4-\ R
. compute the next word -
probabilities £ P
. sample the next word 2 Z, C
(sometimes using beam- O B T
search)

e = (Economic, growth, has, slowed, down, in, recent, years, .)



Neural Machine Translation - Attention

f= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)
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Mechanism
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e = (Economic, growth, has, slowed, down, i, recent, years, .)

(b) English->German (WMT-15)  (c) English—Czech (WMT-15)

Model Note Model Note
24.8 Neural MT 18.3 Neural MT
24.0 | U.Edinburgh, Syntactic SMT 18.2 | JHU, SMT+LM+OSM-4Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT
22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT




Summary

e Pros:

* Neural network models provide state of the art results on many
tasks

e Continuous representations (rather then 1-hot vectors) -
generalize better

* Better modeling of sequences and context using recurrent
architectures

e Cons:

* Lots of hyper-parameter tuning

e Harder to interpret model parameters

* Usually a very long training time, computationally expensive



How Can | Start?

* Y. Goldberg, A Primer on Neural Network Models
for Natural Language Processing

 PyCNN Tutorial (+IPython Notebooks!)

e Slides are available at: www.roeeaharoni.com



http://u.cs.biu.ac.il/~yogo/nnlp.pdf
https://github.com/clab/cnn/tree/master/pyexamples
http://www.roeeaharoni.com

Questions?



The Israeli Natural Language Processing
Meetup

You are invited! (when in Tel Aviv ;)



http://www.meetup.com/The-Israeli-Natural-Language-Processing-Meetup/
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