
Dzmitry Bahdanau
KyungHyun Cho
Yoshua Bengio

@ICLR 2014

Presented By
Roee Aharoni

 Neural Traduction Automatique par Conjointement Apprentissage Pour Aligner et Traduire

Neural Machine Translation by Jointly Learning to Align and Translate

Machine Translation is Everywhere

But there’s still much work to do…

Lets start with a Live Demo

http://104.131.78.120/

http://104.131.78.120/

“Traditional” Statistical Machine Translation
Start with (lots) of parallel text:

“Conventional” Statistical Machine Translation
Learn the alignments (using the EM algorithm):

“Conventional” Statistical Machine Translation
Learn the alignments (using the EM algorithm):

“Conventional” Statistical Machine Translation
Extract phrase pairs:

“Conventional” Statistical Machine Translation
Use a log linear model combination to score possible hypotheses:

“Conventional” Statistical Machine Translation
Use a log linear model combination to score possible hypotheses:

“Conventional” Statistical Machine Translation
Use beam search to output the best hypothesis:

So far we had…

• Learn Alignments from a large parallel corpus

• Extract phrases from the alignments

• Extract some more features

• (And then some more…)

• Train one combined model using all the above + large language
model: estimate p(f|e) as p(e|f)p(f)

• Run search on top of that

translation

 model

language

 model

So let’s try another approach

• Maybe we can just estimate p(f|e) directly?

• For that, we need to know -

What is deep learning?

“A family of learning methods that use
deep architectures to learn high-level

feature representations”

What is deep learning?

“A family of learning methods that use
deep architectures to learn high-level

feature representations”

A basic machine learning setup

• Given a dataset of: training examples,

• input:

• output:

• Learn a function to predict correctly on new
inputs.

• step I: pick a learning algorithm (SVM, log. reg., NN…)

• step II: optimize it w.r.t a loss, i.e:

Logistic regression - the “1-layer” network

• Model the classier as:

• Learn the weight vector: using gradient-
descent (next slide)

• is a non-linearity, e.g. the sigmoid function:

�(z) = 1
1+e�z

Training (log. regression) with gradient-descent
• Define the loss-function (squared error, cross entropy…):

• Derive the loss-function w.r.t. the weight vector, w:

• Perform gradient-descent:

• start with a random weight vector

• repeat until convergence:

Multi layer perceptron (MLP) - a multi-layer NN

“high level” features

• Model the classifier as:

• Can be seen as multilayer logistic regression

• a.k.a feed-forward NN

Training (an MLP) with Backpropagation:

Training (an MLP) with Backpropagation:
• Assume two outputs per input:

• Define the loss-function per example:

• Derive the loss-function w.r.t. the last layer:

• Derive the loss function w.r.t. the first layer:

• Update the weights:

• A deeper architecture is more expressive than a shallow one given same
number of nodes [Bishop, 1995]

• 1-layer nets (log. regression) can only model linear hyperplanes
• 2-layer nets can model any continuous function (given sufficient nodes)
• >3-layer nets can do so with fewer nodes

Why deeper is better?

Example - the XOR problem:

• Enable variable length inputs (sequences)

• Modeling internal structure in the input or output

• Introduce a “memory/context” component to utilize history

Recurrent Neural Networks (RNN’s)

Output

Hidden

InputContext

• “Horizontally deep” architecture

• Recurrence equations:

• Transition function:

• Output function: , usually implemented as softmax

Recurrent Neural Networks (RNN’s)

yt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)

• Enables to output a probability distribution over k possible classes

• can be seen as trying to minimize the cross-entropy between the
predictions and the truth

• d usually holds log-likelihood values

The Softmax Function

p(x = i) = eyi
kP

j=1
eyj

• As usual, define a loss function (per sample, through time):

• Derive the loss function w.r.t. parameters , starting at :

• Backpropagate through time - update and repeat for , until :

• Eventually, update the weights:

Training (RNN’s) with Backpropagation Through Time

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥

• Number of hidden layers: 10 (or more) rather than 2-3
• Number of output nodes: 5000 (or more) rather then 50
• Better optimization strategies, heuristics (layer-by-layer

pre-training, dropout…)
• Much more computation power

Why now? Today vs. 80’s-90’s

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

And back to Machine Translation…

Neural Machine Translation
• Sequence2Sequence/Encoder-Decoder model (Sutskever et al, 2014)

• Much simpler model the traditional one

• But is it too simple? Where are the alignments?

The Attention Mechanism

• The previous model tries to decode the entire translation from
one “compressed” vector

• But at each step we would like to focus on a specific part of
the sentence

The Attention Mechanism - This work

• The solution: enable the network to pay attention to specific
areas of the input by adding new (weighted) connections

Results - Before Attention

• Long sentences are very hard as they are compressed
to a fixed length vector

Results - After Attention

• The attention mechanism helps to overcome the issue

Results - After Attention
• The attention mechanism helps to overcome the issue

• The model is able to learn nice alignments:

Results - WMT 15’

• WMT 15’ - “MT olympics”

• MONTREAL - this work

• First time that a neural
system gets the highest
BLEU score in the
competition!

Summary

• Machine translation is hard!

• The traditional models work well (google translate) but are
very complex

• Neural Machine Translation is very promising

• The attention mechanism is essential to make it work well

References
• A Primer on Neural Network Models for Natural

Language Processing (Yoav Goldberg)

• Neural Machine Translation by Jointly Learning to Align
and Translate (Dzmitry Bahdanau, Kyunghyun Cho,
Yoshua Bengio)

• Stanford CS224N - Neural Machine Translation Talk
 (Thang Luong)

• K. Duh, Deep Learning Tutorial at DL4MT winter school

http://u.cs.biu.ac.il/~yogo/nnlp.pdf
https://arxiv.org/abs/1409.0473
http://web.stanford.edu/class/cs224n/handouts/cs224n-lecture16-nmt.pdf
https://drive.google.com/file/d/0B32DIMi7asUeTmpDS0xqM0o3MlE/view

