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Machine Translation is Everywhere



But there’s still much work to do…



Lets start with a Live Demo

http://104.131.78.120/

http://104.131.78.120/




“Traditional” Statistical Machine Translation
Start with (lots) of parallel text:



“Conventional” Statistical Machine Translation
Learn the alignments (using the EM algorithm):



“Conventional” Statistical Machine Translation
Learn the alignments (using the EM algorithm):



“Conventional” Statistical Machine Translation
Extract phrase pairs:



“Conventional” Statistical Machine Translation
Use a log linear model combination to score possible hypotheses:



“Conventional” Statistical Machine Translation
Use a log linear model combination to score possible hypotheses:



“Conventional” Statistical Machine Translation
Use beam search to output the best hypothesis:



So far we had…

• Learn Alignments from a large parallel corpus 

• Extract phrases from the alignments 

• Extract some more features  

• (And then some more…) 

• Train one combined model using all the above + large language 
model: estimate p(f|e) as p(e|f)p(f)

• Run search on top of that

translation 

 model

language  

 model



So let’s try another approach

• Maybe we can just estimate p(f|e) directly? 

• For that, we need to know -



What is deep learning?

“A family of learning methods that use 
deep architectures to learn high-level 

feature representations”
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A basic machine learning setup

• Given a dataset of:                                  training examples, 

• input:  

• output:  

• Learn a function                  to predict correctly on new 
inputs. 

• step I: pick a learning algorithm (SVM, log. reg., NN…) 

• step II: optimize it w.r.t a loss, i.e:    



Logistic regression - the “1-layer” network

• Model the classier as: 

• Learn the weight vector:            using gradient-
descent (next slide)   

•    is a non-linearity, e.g. the sigmoid function:

�(z) = 1
1+e�z



Training (log. regression) with gradient-descent
• Define the loss-function (squared error, cross entropy…): 

• Derive the loss-function w.r.t. the weight vector, w: 

• Perform gradient-descent: 

• start with a random weight vector 

• repeat until convergence: 



Multi layer perceptron (MLP) - a multi-layer NN

“high level” features

• Model the classifier as:  

• Can be seen as multilayer logistic regression 

• a.k.a feed-forward NN



Training (an MLP) with Backpropagation:



Training (an MLP) with Backpropagation:
• Assume two outputs per input:  

• Define the loss-function per example: 

• Derive the loss-function w.r.t. the last layer: 

• Derive the loss function w.r.t. the first layer:  

• Update the weights: 



• A deeper architecture is more expressive than a shallow one given same 
number of nodes [Bishop, 1995] 

• 1-layer nets (log. regression) can only model linear hyperplanes 
• 2-layer nets can model any continuous function (given sufficient nodes) 
• >3-layer nets can do so with fewer nodes

Why deeper is better?

Example - the XOR problem:



• Enable variable length inputs (sequences) 

• Modeling internal structure in the input or output 

• Introduce a “memory/context” component to utilize history

Recurrent Neural Networks (RNN’s)

Output

Hidden

InputContext



• “Horizontally deep” architecture 

• Recurrence equations: 

• Transition function: 

• Output function:                     , usually implemented as softmax

Recurrent Neural Networks (RNN’s)

yt = Y (ht)

ht = H(ht�1, xt) = tanh(Wxt�1 + Uht�1 + b)



• Enables to output a probability distribution over k possible classes 

• can be seen as trying to minimize the cross-entropy between the 
predictions and the truth 

• d    usually holds log-likelihood values

The Softmax Function

p(x = i) = eyi
kP

j=1
eyj



• As usual, define a loss function (per sample, through time                     ): 

• Derive the loss function w.r.t. parameters    , starting at           : 

• Backpropagate through time - update and repeat for         , until          : 

• Eventually, update the weights: 

Training (RNN’s) with Backpropagation Through Time 

r⇥ = �Jt
�⇥ t = T

t = 1, 2, ..., T

t = 1t� 1

⇥ = �r⇥

Loss = J(⇥, x) = �
TP

t=1
Jt(⇥, xt)

r⇥ = @Jt
@⇥

r⇥ = r⇥+ @Jt
@⇥



• Number of hidden layers: 10 (or more) rather than 2-3 
• Number of output nodes: 5000 (or more) rather then 50 
• Better optimization strategies, heuristics (layer-by-layer 

pre-training, dropout…) 
• Much more computation power

Why now? Today vs. 80’s-90’s 



And back to Machine Translation…
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And back to Machine Translation…



Neural Machine Translation
• Sequence2Sequence/Encoder-Decoder model (Sutskever et al, 2014) 

• Much simpler model the traditional one 

• But is it too simple? Where are the alignments?



The Attention Mechanism

• The previous model tries to decode the entire translation from 
one “compressed” vector 

• But at each step we would like to focus on a specific part of 
the sentence



The Attention Mechanism - This work

• The solution: enable the network to pay attention to specific 
areas of the input by adding new (weighted) connections



Results - Before Attention

• Long sentences are very hard as they are compressed 
to a fixed length vector



Results - After Attention

• The attention mechanism helps to overcome the issue



Results - After Attention
• The attention mechanism helps to overcome the issue 

• The model is able to learn nice alignments:



Results - WMT 15’

• WMT 15’ - “MT olympics” 

• MONTREAL - this work 

• First time that a neural 
system gets the highest 
BLEU score in the 
competition!



Summary

• Machine translation is hard! 

• The traditional models work well (google translate) but are 
very complex 

• Neural Machine Translation is very promising 

• The attention mechanism is essential to make it work well
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