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Abstract

Making computers successfully process natural language is a long standing
goal in artificial intelligence that spreads across numerous tasks and applica-
tions. One prominent example is machine translation, that has preoccupied the
minds of scientists for many decades (Bar-Hillel (1951); Weaver (1955)). While
serving as a scientific benchmark for the progress of artificial intelligence, ma-
chine translation and many other natural language processing (NLP) applica-
tions are also highly useful for millions of people around the globe, enabling

better communication and easier access to the world’s information.

Many NLP tasks can be cast as sequence-to-sequence learning problems —
e.g. problems that involve sequential input and output. From a machine learn-
ing perspective, such problems handle the prediction of a structured output
given a structured input, as each element of the output sequence is usually pre-
dicted while conditioning on the input sequence and on the previously pre-
dicted elements. This setting requires rich feature representations and special-
ized inference algorithms to take into account the different interactions between

and within the input and output elements.

The recent proliferation of neural-network based machine learning methods
(also known as “deep-learning”) has enabled profound progress on sequence-
to-sequence learning tasks; specifically, it allowed to implicitly learn represen-
tations in an end-to-end manner, without requiring manual feature engineering
as was common in previous methods. In addition, the limitation of using a
tixed context window when modeling each element due to computational bur-
den was removed with the neural methods, allowing for much better modeling

of long-range dependencies in such tasks.



In order to unlock the full potential of neural-network based methods for
NLP applications, many new research questions arise — can we design neural
models while integrating existing knowledge about language? Can we take
advantage of such implicitly learned representations in shared multilingual set-
tings? What are the limitations of such models? What can we learn about tex-
tual domains from the representations such models learn?

In this thesis, I seek answers to those questions revolving around neural
sequence-to-sequence learning for NLP. My works involve different levels of
language studies: Morphology, the study of words, how they are formed, and
their relationship to other words in the same language, where I propose novel
neural architectures for inflection generation; Syntax — the set of rules, princi-
ples, and processes that govern the structure of sentences in a given language,
where I study the integration of syntactic information to neural machine trans-
lation; Semantics — the study of meaning in language, usually at the sentence
level, where I worked on complex sentence simplification that preserves the in-
put semantics, and on massively multilingual translation that encodes dozens
of languages to a shared semantic space; and finally Pragmatics — that looks at
linguistic context beyond the sentence level, where I proposed a novel method
to select training data using contextualized sentence representations from pre-

trained neural language models.

In Chapter 3, “Morphological Inflection Generation with Hard Monotonic
Attention”, I propose novel neural architectures for sequence-to-sequence learn-
ing that explicitly model a monotonic alignment between the source and target
sequence elements. The models are inspired by the monotonic alignment be-

tween the characters in different morphological inflections of a given word.

I evaluate the proposed models across multiple datasets for morphological
inflection generation in various languages, where they obtain state-of-the-art
results. My proposed approach became a well-known baseline in the litera-
ture, and is still considered as a state-of-the-art approach for such morphologi-
cal tasks.

In Chapter 4, “Towards String-to-Tree Neural Machine Translation”, I pro-

pose a method to incorporate linguistic knowledge into neural sequence-to-
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sequence learning models for machine translation. Inspired by works on syn-
tactic parsing, I suggest to represent the target sentence as a lexicalized, lin-

earized constituency parse tree.

I show that incorporating such knowledge improves the translation quality
as measured in BLEU and by human raters, especially in low-resource scenar-
ios, across multiple language pairs. This work is one of the first attempts to
incorporate such linguistic knowledge into end-to-end neural models, which
started an ongoing line of work in the MT and NLP community. Subsequent
works explored other types of syntactic annotations, or other ways to inject lin-
guistic knowledge.

In Chapter 5, “Split and Rephrase: Better Evaluation and a Stronger Base-
line”, I investigate the ability of neural sequence-to-sequence learning models
to perform semantic text simplification where the input is a long, complex sen-

tence and the output is several shorter sentences that convey the same meaning.

I show that while such models seem to provide state-of-the-art results on
the proposed benchmark, they are prone to over-fitting and memorization. I
then propose a new data split based on the structured semantic relations that
describe the sentences, to better test the generalization abilities of such models
— unveiling their limitations. This work was later extended to a larger, more

realistic dataset by others, which adopted our proposed approaches.

In Chapter 6, “Massively Multilingual Neural Machine Translation”, I inves-
tigate scaling neural machine translation (NMT) models to massively multilin-
gual settings, involving up to 103 languages and more than 95 million sentence

pairs in a single model.

I show that training such models is highly effective for improving the per-
formance on low-resource language pairs, resulting in state-of-the-art results on
the publicly available TED talks dataset. I then conduct large-scale experiments
where I point at the trade-off between the degradation in supervised transla-
tion quality due to the bottleneck caused by scaling to numerous languages
vs. improved generalization abilities in zero-shot translation when increasing
the number of languages. While this work was the first to scale NMT mod-
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els to such settings, many subsequent works now train massively multilingual
language models that enable cross-lingual transfer learning, for better NLP in

under-resourced languages.

In Chapter 7, “Emerging Domain Clusters in Pretrained Language Models”,
I investigate sentence representations learned by various large scale neural lan-
guage models with respect to the domains those sentences were drawn from.
I show that using such representations, it is possible to cluster sentences into
domains with very high accuracy, in a purely unsupervised manner.

I then propose ways to utilize these emerging domain clusters to select data
for training domain-specific neural machine translation models. I show that
such models outperform strong baselines that are either trained on all the avail-
able data or use established data selection methods. This work is the first to
explore such use of pretrained language models for sentence clustering or do-
main data selection, and suggests a novel, pragmatic, data-driven approach to

the notion of domains in textual data.

As this work shows, neural sequence-to-sequence learning is a powerful ap-
proach to tackle many different problems in various areas of NLP — from the
low-level morphological tasks to the high-level task of translating between nu-
merous languages. While being highly effective, there are still many areas left to
explore further. In the final part of this thesis, I conclude with the contributions
of this work and with a list of directions for future work which I find important
to pursue further on the subject.
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Chapter 1
Introduction

In this chapter we provide an introduction to the different chapters in this thesis,

including our contributions and related work.

1.1 Hard Attention Architectures for Morphological

Inflection Generation

Morphological inflection generation involves generating a target word (e.g.
“hédrtestem”, the German word for “hardest”), given a source word (e.g. “hart”,
the German word for “hard”) and the morpho-syntactic attributes of the target

(POS=adjective, gender=masculine, type=superlative, etc.).

The task is important for many down-stream NLP tasks such as machine
translation, especially for dealing with data sparsity in morphologically rich
languages where a lemma can be inflected into many different word forms. Sev-
eral studies have shown that translating into lemmas in the target language and
then applying inflection generation as a post-processing step is beneficial for
phrase-based machine translation (Minkov et al., 2007; Toutanova et al., 2008;
Clifton and Sarkar, 2011; Fraser et al., 2012; Chahuneau et al., 2013) and more

recently for neural machine translation (Garcia-Martinez et al., 2016).

The task was traditionally tackled with hand engineered finite state trans-
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ducers (FST) (Koskenniemi, 1984; Kaplan and Kay, 1994) which rely on expert
knowledge, or using trainable weighted finite state transducers (Mohri et al.,
1997; Eisner, 2002) which combine expert knowledge with data-driven param-
eter tuning. Many other machine-learning based methods (Yarowsky and Wi-
centowski, 2000; Dreyer and Eisner, 2011; Durrett and DeNero, 2013; Hulden
et al., 2014; Ahlberg et al., 2015; Nicolai et al., 2015) were proposed for the task,
although with specific assumptions about the set of possible processes that are
needed to create the output sequence.

More recently, the task was modeled as neural sequence-to-sequence learn-
ing over character sequences with impressive results (Faruqui et al., 2016). The
vanilla encoder-decoder models as used by Faruqui et al. compress the input
sequence to a single, fixed-sized continuous representation. Instead, the soft-
attention based sequence to sequence learning paradigm (Bahdanau et al., 2015)
allows directly conditioning on the entire input sequence representation, and
was utilized for morphological inflection generation with great success (Kann
and Schiitze, 2016a,b).

However, the neural sequence-to-sequence models require large training
sets in order to perform well: their performance on the relatively small CELEX
dataset is inferior to the latent variable WFST model of Dreyer et al. (2008). In-
terestingly, the neural WFST model by Rastogi et al. (2016) also suffered from
the same issue on the CELEX dataset, and surpassed the latent variable model

only when given twice as much data to train on.

In Chapter 3, we propose a model which handles the above issues by di-
rectly modeling an almost monotonic alignment between the input and output
character sequences, which is commonly found in the morphological inflection
generation task (e.g. in languages with concatenative morphology). The model
consists of an encoder-decoder neural network with a dedicated control mech-
anism: in each step, the model attends to a single input state and either writes
a symbol to the output sequence or advances the attention pointer to the next
state from the bi-directionally encoded sequence.

This modeling suits the natural monotonic alignment between the input and

output, as the network learns to attend to the relevant inputs before writing the
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output which they are aligned to. The encoder is a bi-directional RNN, where
each character in the input word is represented using a concatenation of a for-
ward RNN and a backward RNN states over the word’s characters. The com-
bination of the bi-directional encoder and the controllable hard attention mech-
anism enables to condition the output on the entire input sequence. Moreover,
since each character representation is aware of the neighboring characters, non-
monotone relations are also captured, which is important in cases where seg-
ments in the output word are a result of long range dependencies in the input
word. The recurrent nature of the decoder, together with a dedicated feedback
connection that passes the last prediction to the next decoder step explicitly, en-
ables the model to also condition the current output on all the previous outputs

at each prediction step.

The hard attention mechanism allows the network to jointly align and trans-
duce while using a focused representation at each step, rather then the weighted
sum of representations used in the soft attention model. This makes our model
resolution preserving (Kalchbrenner et al., 2016) while also keeping decoding time
linear in the output sequence length rather than multiplicative in the input and
output lengths as in the soft-attention model. In contrast to previous sequence-
to-sequence work, we do not require the training procedure to also learn the
alignment. Instead, we use a simple training procedure which relies on inde-
pendently learned character-level alignments, from which we derive gold trans-
duction+control sequences. The network can then be trained using straightfor-

ward cross-entropy loss.

To evaluate our model, we perform extensive experiments on three previ-
ously studied morphological inflection generation datasets: the CELEX dataset
(Baayen et al., 1993), the Wiktionary dataset (Durrett and DeNero, 2013) and
the SIGMORPHON2016 dataset (Cotterell et al., 2016). We show that while our
model is on par with or better than the previous neural and non-neural state-of-
the-art approaches, it also performs significantly better with very small training
sets, being the first neural model to surpass the performance of the weighted
FST model with latent variables which was specifically tailored for the task by
Dreyer et al. (2008). Finally, we analyze and compare our model and the soft
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attention model, showing how they function very similarly with respect to the
alignments and representations they learn, in spite of our model being much
simpler. This analysis also sheds light on the representations such models learn
tor the morphological inflection generation task, showing how they encode spe-
cific features like a symbol’s type and the symbol’s location in a sequence.

To summarize, our contributions in Chapter 3 are three-fold:

1. We present a hard attention model for nearly-monotonic sequence to se-

quence learning, as common in the morphological inflection setting.

2. We evaluate the model on the task of morphological inflection generation,
establishing a new state of the art on three previously-studied datasets for
the task.

3. We perform an analysis and comparison of our model and the soft-attention
model, shedding light on the features such models extract for the inflec-

tion generation task.

Our Hard-Attention models were adopted by the community as a strong
tool for morphological inflection generation (Gorman et al., 2019), lemmatiza-
tion (Sahin and Gurevych, 2019), surface realization (Puzikov et al., 2019), and
machine translation (Press and Smith, 2018), among others. They were also ex-
tended to non-monotonic scenarios (Wu et al., 2018a) and to exact inference (Wu
and Cotterell, 2019). Our models were improved further resulting in the win-
ning submissions for the 2017 CoNLL shared task on morphological reinflection
(Makarov et al., 2017; Cotterell et al., 2017) and the 2018 CoNLL shared task on
Universal Morphological Reinflection (Makarov and Clematide, 2018; Cotterell
et al., 2018).

1.2 Linearizing Syntax for String-to-Tree Neural Ma-

chine Translation

Neural Machine Translation (NMT) (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014a; Bahdanau et al., 2015) has recently became the state-of-the-art ap-
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proach to machine translation (Bojar et al., 2016), while being much simpler than
the previously dominant phrase-based statistical machine translation (SMT) ap-
proaches (Koehn, 2010). NMT models usually do not make explicit use of syn-
tactic information about the languages at hand.

However, a large body of work was dedicated to syntax-based SMT (Williams
et al.,, 2016). One prominent approach to syntax-based SMT is string-to-tree
(S2T) translation (Yamada and Knight, 2001, 2002), in which a source-language
string is translated into a target-language tree. S2T approaches to SMT help
to ensure the resulting translations have valid syntactic structure, while also
mediating flexible reordering between the source and target languages. The
main formalism driving current S2T SMT systems is GHKM rules (Galley et al.,
2004, 2006), which are synchronous transduction grammar (STSG) fragments,
extracted from word-aligned sentence pairs with syntactic trees on one side.
The GHKM translation rules allow flexible reordering on all levels of the parse-
tree.

In Chapter 4, we suggest that NMT can also benefit from the incorporation
of syntactic knowledge, and propose a simple method of performing string-to-
tree neural machine translation. Our method is inspired by recent works in
syntactic parsing, which model trees as sequences (Vinyals et al., 2015; Choe
and Charniak, 2016). Namely, we translate a source sentence into a linearized,
lexicalized constituency tree.

The linearized trees we predict are different in their structure from those in
Vinyals et al. (2015) as instead of having part of speech tags as terminals, they
contain the words of the translated sentence. We intentionally omit the POS
information as including it would result in significantly longer sequences. The
S2T model is trained on parallel corpora in which the target sentences are auto-
matically parsed. Since this modeling keeps the form of a sequence-to-sequence
learning task, we can employ the conventional attention-based sequence to se-
quence paradigm Bahdanau et al. (2015) as-is, while enriching the output with

syntactic information.

Some recent works did propose to incorporate syntactic or other linguistic
knowledge into NMT systems, although mainly on the source side: Eriguchi
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et al. (2016a,b) replace the encoder in an attention-based model with a Tree-
LSTM (Tai et al., 2015) over a constituency parse tree; Bastings et al. (2017) en-
coded sentences using graph-convolutional networks over dependency trees;
Sennrich and Haddow (2016) proposed a factored NMT approach, where each
source word embedding is concatenated to embeddings of linguistic features
of the word; Luong et al. (2015a) incorporated syntactic knowledge via multi-
task sequence to sequence learning: their system included a single encoder with
multiple decoders, one of which attempts to predict the parse-tree of the source
sentence; Stahlberg et al. (2016) proposed a hybrid approach in which transla-
tions are scored by combining scores from an NMT system with scores from
a Hiero (Chiang, 2005, 2007) system. Shi et al. (2016) explored the syntactic
knowledge encoded by an NMT encoder, showing the encoded vector can be
used to predict syntactic information like constituency trees, voice and tense
with high accuracy.

In parallel and highly related to our work, Eriguchi et al. (2017) proposed
to model the target syntax in NMT in the form of dependency trees by using
an RNNG-based decoder Dyer et al. (2016), while Nadejde et al. (2017) incorpo-
rated target syntax by predicting CCG tags serialized into the target translation.
Our work differs from those by modeling syntax using constituency trees, as
was previously common in the “traditional” syntax-based machine translation

literature.

We show our method improves the performance as measured by BLEU in
both high and low-resource settings, across three language pairs. We also per-
form a human evaluation in the high resource scenario where we show hu-
man rates prefer the outputs of the string-to-tree system over a similarly trained
string-to-string system.

To summarize, our contributions in Chapter 4 are as follows:

* We propose a method for performing string-to-tree neural machine trans-

lation by linearizing constituency syntax trees.

* We show our method improves the performance as measured by BLEU in

both high and low-resource settings, across three language pairs, and also
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generates better translations according to human raters.

* We perform an extensive analysis of the outputs generated by our method,
showing that they produce valid syntactic trees, include more reordering,

and generate more relative pronouns.

This work and others initiated a line of work on representing syntactic trees
and trees in general using neural sequence to sequence models. Some exam-
ples include dependency-based NMT (Wu et al., 2018b), syntactically super-
vised transformers for faster NMT (Akoury et al., 2019), and Forest-based NMT
Ma et al. (2018). Regarding tasks other than MT, examples include translating
between different semantic formalisms (Stanovsky and Dagan, 2018), code gen-
eration (Alon et al., 2019) and response generation Du and Black (2019).

1.3 Semantic Sentence Simplification by Splitting and
Rephrasing

Processing long, complex sentences is challenging. This is true either for hu-
mans in various circumstances (Inui et al., 2003; Watanabe et al., 2009; De Belder
and Moens, 2010) or in NLP tasks like parsing (Tomita, 1986; McDonald and
Nivre, 2011; Jelinek, 2014) and machine translation (Chandrasekar et al., 1996;
Pouget-Abadie et al., 2014; Koehn and Knowles, 2017). An automatic system ca-
pable of breaking a complex sentence into several simple sentences that convey
the same meaning is very appealing.

Narayan et al. (2017) introduced a dataset, evaluation method and baseline
systems for the task, naming it “Split and Rephrase”. The dataset includes
1,066,115 instances mapping a single complex sentence to a sequence of sen-
tences that express the same meaning, together with RDF triples that describe

their semantics.

They considered two system setups: a text-to-text setup that does not use the
accompanying RDF information, and a semantics-augmented setup that does.

We focus on the text-to-text setup, which we find to be more challenging and
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more natural.

We begin with vanilla sequence-to-sequence models with attention (Bah-
danau et al., 2015) and reach an accuracy of 77.5 BLEU, substantially outper-
forming the text-to-text baseline of Narayan et al. (2017) and approaching their
best RDF-aware method. However, manual inspection reveal many cases of
unwanted behaviors in the resulting outputs: (1) many resulting sentences are
unsupported by the input: they contain correct facts about relevant entities, but
these facts were not mentioned in the input sentence; (2) some facts are re-
peated—the same fact is mentioned in multiple output sentences; and (3) some

facts are missing—mentioned in the input but omitted in the output.

The model learned to memorize entity-fact pairs instead of learning to split
and rephrase. Indeed, feeding the model with examples containing entities
alone without any facts about them causes it to output perfectly phrased but
unsupported facts. Digging further, we find that 99% of the simple sentences
(more than 89% of the unique ones) in the validation and test sets also appear
in the training set, which—coupled with the good memorization capabilities of
sequence-to-sequence models and the relatively small number of distinct sim-

ple sentences—helps to explain the high BLEU score.

To aid further research on the task, we propose a more challenging split of
the data. We also establish a stronger baseline by extending the sequence-to-
sequence approach with a copy mechanism, which was shown to be helpful
in similar tasks Gu et al. (2016); Merity et al. (2017); See et al. (2017). On the
original split, our models outperform the best baseline of Narayan et al. (2017)
by up to 8.68 BLEU, without using the RDF triples. On the new split, the vanilla
SEQ2SEQ models break completely, while the copy-augmented models perform
better. In parallel to our work, an updated version of the dataset was released
(v1.0), which is larger and features a train/test split protocol which is similar to
our proposal. We report results on this dataset as well.

To summarize, our contributions in Chapter 5 are as follows:

¢ We point at issues in the training data for the task, and show how they

make it easy for simple neural sequence-to-sequence models to perform
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well by memorizing the training set.

* We create a new data split for the task by taking into account the underly-
ing semantic relations, which makes it much harder to solve it by memo-
rization.

* We establish stronger baselines by using models with a copy mechanism,
allowing better generalization.

A consequent work by Botha et al. (2018) created a larger, more natural
dataset for the task. Using our proposed modeling recipes, they greatly im-
proved the performance on the task using their new dataset, encouraging future
work on the task.

1.4 Massively Multilingual Neural Machine Trans-

lation: Towards Universal Translation

Neural machine translation (NMT) (Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014b) is the current state-of-the-art approach for
machine translation in both academia (Bojar et al., 2016, 2017, 2018) and in-
dustry (Wu et al.,, 2016; Hassan et al., 2018). Recent works (Dong et al., 2015;
Firat et al., 2016a; Ha et al., 2016; Johnson et al., 2017) extended the approach to
support multilingual translation, i.e. training a single model that is capable of

translating between multiple language pairs.

Multilingual models are appealing for several reasons. First, they are more
efficient in terms of the number of required models and model parameters, en-
abling simpler deployment. Another benefit is transfer learning; when low-
resource language pairs are trained together with high-resource ones, the trans-
lation quality may improve (Zoph et al., 2016; Nguyen and Chiang, 2017). An
extreme case of such transfer learning is zero-shot translation (Johnson et al.,
2017), where multilingual models are able to translate between language pairs

that were never seen during training.
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While very promising, it is still unclear how far one can scale multilingual
NMT in terms of the number of languages involved. Previous works on multi-
lingual NMT typically trained models with up to 7 languages (Dong et al., 2015;
Firat et al., 2016b; Ha et al., 2016; Johnson et al., 2017; Gu et al., 2018a) and up to
20 trained directions (Cettolo et al., 2017) simultaneously. One recent exception
is Neubig and Hu (2018) who trained many-to-one models from 58 languages
into English. While utilizing significantly more languages than previous works,
their experiments were restricted to many-to-one models in a low-resource set-
ting with up to 214k examples per language-pair and were evaluated only on

four translation directions.

In Chapter 6, we take a step towards practical “universal” NMT - training
massively multilingual models which support up to 102 languages and with
up to one million examples per language-pair simultaneously. Specifically, we
focus on training “English-centric” many-to-many models, in which the train-
ing data is composed of many language pairs that contain English either on the
source side or the target side. This is a realistic setting since English parallel
data is widely available for many language pairs. We restrict our experiments
to Transformer models (Vaswani et al., 2017) as they were shown to be very ef-
fective in recent benchmarks (Ott et al., 2018), also in the context of multilingual
models (Lakew et al., 2018; Sachan and Neubig, 2018).

We evaluate the performance of such massively multilingual models while
varying factors like model capacity, the number of trained directions (tasks)
and low-resource vs. high-resource settings. Our experiments on the publicly
available TED talks dataset Qi et al. (2018) show that massively multilingual
many-to-many models with up to 58 languages to-and-from English are very
effective in low resource settings, allowing to use high-capacity models while
avoiding overfitting and achieving superior results to the current state-of-the-
art on this dataset Neubig and Hu (2018); Wang et al. (2018) when translating
into English.

We then turn to experiment with models trained on 103 languages in a high-
resource setting. For this purpose we compile an English-centric in-house dataset,
including 102 languages aligned to-and-from English with up to one million
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examples per language pair. We then train a single model on the resulting
204 translation directions and find that such models outperform strong bilin-
gual baselines by more than 2 BLEU averaged across 10 diverse language pairs,
both to-and-from English. Finally, we analyze the trade-offs between the num-
ber of involved languages and translation accuracy in such settings, showing
that massively multilingual models generalize better to zero-shot scenarios. We

hope these results will encourage future research on massively multilingual
NMT.

In summary, our contributions in Chapter 6 are the following;:

* We perform extensive experiments on massively multilingual NMT, show-
ing that a single Transformer model can successfully scale to 103 lan-
guages and 204 trained directions with one million examples per direc-

tion, while outperforming strong single-pair baselines.

¢ We show that massively multilingual models are effective in low-resource
settings, allowing to use high-capacity models while avoiding overfitting
due to the data-scarcity in single-pair settings.

* We analyze the trade-offs between model capacity, the number of training

examples and the number of languages involved in such settings.

While this work was the first to scale NMT models to such settings, many
subsequent works now train massively multilingual language models that en-
able cross-lingual transfer learning, for better NLP in under-resourced languages
(Devlin et al., 2019; Conneau et al., 2019; Siddhant et al., 2019). Other subse-
quent works investigate scaling such models even further in terms of the num-
ber of parameters and training examples (Arivazhagan et al., 2019) and ana-
lyzed the emerging language families within their learned representations with
respect to linguistic theories on the subject (Kudugunta et al., 2019). Improving
such models and making them available to the public is of very high impor-
tance and has global impact, as most of the current research on NLP is mainly
focused on English (Bender, 2019).
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1.5 Emerging Domain Clusters in Pretrained Language
Models

In Chapter 7, we investigate the use of large pre-trained neural language models
for the task of domain data selection for machine translation.

It is common knowledge in modern NLP that using large amounts of high-
quality training data is a key aspect in building successful machine-learning
based systems. For this reason, a major challenge when building such systems
is obtaining data in the domain of interest. But what defines a domain? Natu-
ral language varies greatly across topics, styles, levels of formality, genres and
many other linguistic nuances (van der Wees et al., 2015; van der Wees, 2017;
Niu et al., 2017). This overwhelming diversity of language makes it hard to find
the right data for the task, as it is nearly impossible to well-define the exact re-
quirements from such data with respect to all the aforementioned aspects. On
top of that, domain labels are usually unavailable — e.g. in useful large-scale
web-crawled data like Common Crawl (Raffel et al., 2019).!

Domain data selection is the task of selecting the most appropriate data for
a domain from a large corpus given a smaller set of in-domain data (Moore and
Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013; Silva et al., 2018). We pro-
pose to use the recent, highly successful self-supervised pre-trained language
models, e.g. Devlin et al. (2019); Liu et al. (2019) for domain data selection.
As pretrained LMs demonstrate state-of-the-art performance across many NLP
tasks after being trained on massive amounts of data, we hypothesize that the
robust representations they learn may be useful for mapping sentences to do-
mains in an unsupervised, data-driven approach. We show that these models
indeed learn to cluster sentence representations to domains without further su-
pervision, and quantify this by fitting Gaussian Mixture Models (GMMs) to the
learned representations and measuring the purity of the resulting clustering.
We then propose methods to leverage these emergent domain clusters for do-

main data selection in two ways:

lnttps://commoncrawl.org/
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* Via distance-based retrieval in the sentence embedding space induced by
the pretrained language model.

* By fine-tuning the pretrained language model for binary classification,
where positive examples are from the domain of interest.

Our methods enable to select relevant data for the task while requiring only
a small set of monolingual in-domain data. As they are based solely on the
representations learned by self-supervised LMs, they do not require additional
domain labels which are usually vague and over-simplify the notion of domain
in textual data.

We evaluate our method on data selection for neural machine translation
(NMT) using the multi-domain German-English parallel corpus composed by
Koehn and Knowles (2017). Our data selection methods enable to train NMT
models that outperform those trained using the well-established cross-entropy
difference method of Moore and Lewis (2010) across five diverse domains, achiev-
ing a recall of more than 95% in all cases with respect to an oracle that selects
the “true” in-domain data.

To summarize, our contributions in Chapter 7 are as follows.

* We show that pre-trained language models are highly capable of cluster-
ing textual data to domains with high accuracy in a purely unsupervised

manner.

* We propose methods to select in-domain data based on this property us-
ing vector-space retrieval and positive-unlabeled fine-tuning of pretrained

language models for binary classification.

¢ We show the applicability of our proposed data selection methods on a

popular benchmark for domain adaptation in machine translation.

* An additional contribution is a new, improved data split we create for
this benchmark, as we point on issues with previous splits used in the
literature.
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We hope this work will encourage more research on understanding the data
landscape in NLP, enabling to “find the right data for the task” in the age of
massive models and diverse data sources.

1.6 Qutline

The next chapter covers more background and related work on neural networks
and neural sequence-to-sequence learning. Chapters 3 to 7 are the main body
of the work and describe the aforementioned research works in detail. Finally,

Chapter 8 describes conclusions and directions for future work on the subject.



Chapter 2
Background

We begin by laying some background on neural sequence-to-sequence learning,

and presenting related work.

2.1 Neural Networks Basics

Notation We use bold, lower-case letters for vectors (e.g. v) and bold, upper-

case letters for matrices (e.g. W).

As our basic building blocks, we will begin with describing two types of
neural networks: Feed-Forward neural networks, a.k.a. Multi-Layer-Perceptrons
(MLP’s) and Recurrent Neural Networks (RNN's).

2.1.1 Feed-Forward Neural Networks

A feed-forward, single-layer neural network can be defined as a parameterized,
non-linear function f mapping an input vector x € R into an output vector

y € RIY by computing:

y = fi(x) = z(Wix + by) (2.1)

15
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where z is an element-wise non-linear function (e.g. tanh or the sigmoid func-
tion, among others), and W; € RIY%1¥l and b, € RIYI are the parameters of
f. Multi-layer neural networks are compositions of functions of this form. For

example, a two-layer feed-forward neural network may be of the form:

y = f(x) = fa(fi(x)) = z(Wa(z(Wix + by) + b2)) (2.2)

2.1.2 Recurrent Neural Networks

A caveat of feed-forward networks is their inability to model an unbounded,
variable-sized input, since their input is a fixed-sized vector. This is especially
important in NLP, where we often need to model sentences which vary in length.
A recurrent neural network maps a sequence of input vectors: x1,x2,x3,...,X;
into a sequence of output vectors: hy, hy, h3,. .., h;, allowing variable-length
input. A common architecture for an RNN is the Elman RNN (Elman, 1990),

which describes the following computation:
hi = c(Wx; + Uh;_1 + b) (2.3)

where W € RPrwwxlx| 1 € RPrNNXPraN and b € RPRNN are the RNN's pa-
rameters. In practice, the Elman RNN is hard to train due to the “vanishing
gradient” issue (Bengio et al., 1994; Hochreiter, 1998; Pascanu et al., 2013). A
popular RNN architecture which is less sensitive to this issue is the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), which is defined

as follows:

iy = o(Wilxg, hy—1] + b;)
0 = 0(Woy[xt, hy_1] +by)
fr = o(Wglxy, hy_1] + by) (2.4)
¢; = tanh (Wg[xy, hy 1] + be)

ct =108+ frociq

h; = o; o tanh (Ct)
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Another widely adopted RNN architecture is the Gated Recurrent Unit (GRU)
(Cho et al., 2014; Chung et al., 2014) which is slightly simpler than the LSTM:

z = 0(Wy[hi_1,x¢])

rr = oc(Wrlhy_1, x¢])

hy = tanh (W[rs o hy_q, x¢])
hy=(1—z)ohi_1+ziohy

(2.5)

2.2 Neural Machine Translation

Neural Machine Translation (NMT) is an approach for machine translation,
which models the task using neural networks as the learning algorithm. In this
section we will formally define the task and present some of the basic compo-

nents in a common NMT system.

2.2.1 Task Definition

We begin by formally defining the machine translation task. Given a source sen-
tence: F = f1, f2, f3, .- .,fm,we would like to find a translation E = eq, ey, €3, .. -/ €|E|-
Our task is to find a function mt for which: mt(F) = E, where E is a translation

of F.

In Statistical Machine Translation (SMT), we would like to create a proba-
bilistic model which estimates p(E|F,0) where 6 is a set of parameters learned
from example translations (parallel corpora). With such a model in hand one
can find a translation by searching for mt(F) = argmax p(E|F,9).

E

Neural Machine Translation In neural machine translation, we would like to
model p(E|F, 0) using a neural network. We will now describe the structure of

such network and how it is trained.
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Attention Mechanism

| || i || | | s7 le chat assis sur le tapis </s>
& X X r X f X r X X
S7 S7 S7 7 S7 S7 S7
the cat sat on the mat </s> <s> e ohat aSSIS sur e tap|s
Encoder Decoder

Figure 2.1: An illustration of an NMT model with a bidirectional RNN encoder,
an RNN decoder and an attention mechanism.

2.2.2 Dense Word Representations

In order to perform the translation we first need to define a representation for
the words, or tokens, in the input and output sentences. These representations
will be fed into the neural network. Each source word w; € X ,; where Xy
is the input vocabulary of size |Zinput| will be represented using a fixed-sized
vector w; of size Dj,pys, and similarly for the output words: for each word v;
in the output vocabulary Loutput We will have a vector v;, where |v;| = Doutput-
Note that this definition results in two matrices: W € RIZimputl *Dinput which we
will call the input embedding matrix, and U € R /Zeutput *Douput wwhich we will

call the output embedding matrix.

2.2.3 Encoder

Once we defined the dense word representations which represent the words in
the vocabularies, we will now define the first part of the network, which we
name the Encoder. The Encoder’s role is to create a representation for the entire
input sentence, which will capture the interactions and dependencies between
the different words in it. In general, we can define the Encoder as a parameter-

ized function that receives a sequence of input embeddings: fi, f2, f3,..., fn
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and outputs a sequence of annotation vectors: f = fl, f2, fg, ooy fN, where
each annotation vector is of a fixed size D,,co4.r- While there are many different
encoder variations in the literature, like convolutional encoders (Kalchbrenner
and Blunsom, 2013; Kalchbrenner et al., 2016; Gehring et al., 2017) and self-
attention based encoders (Vaswani et al., 2017). We will first focus on the more
common RNN-based ones:

¢ Uni-Directional RNN Encoder In the first work which successfully ap-
plied NMT in a relatively large scale scenario (Sutskever et al., 2014b), the
encoder was modeled using an LSTM, which was fed with the word em-
beddings of the input sentence. In this case the size of each annotation
vector Deycoder 1S the size of the LSTM output.

¢ Bi-Directional RNN Encoder Another variation of an RNN-based encoder
is the bidirectional RNN encoder Schuster and Paliwal (1997) which con-
sists of two Uni-directional RNN encoders, one fed with the input embed-
dings in a left-to-right order (Forward RNN) and the other in a right-to-left
order (Backward RNN). The outputs from each RNN for every input em-
bedding are then concatenated, resulting in a representation which cap-
tures both the right and the left context of every token in the sentence. In
this case the size of each annotation vector D,,c,4.r is the sum of the size
of the forward RNN output and of the backward RNN output.

2.2.4 Decoder

Given the annotation vectors produced by the encoder, one approach (Sutskever
et al., 2014b) is to use the last annotation vector ﬁ F| (generated after feeding the
embedding of the last token in the input sentence) as the representation for the
entire sentence. We can then “decode” the translation of the source sentence
in a left-to-right manner using another neural-network component, called the
“Decoder”. Generally, we can say that the decoder is a parameterized function

g, mapping from an annotation vector and a sequence of output embeddings to
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the output distribution at a given time step:

p(et|fip e<t,0) = g(f, e<t, ) (2.6)

where g is a parameterized non-linear function.

While here, like in the encoder, there are many possible variations, we be-
gin by describing the most common, RNN-based decoder. In the simplest case,
the decoder is essentially an RNN-based language model: In each step, it is fed
with the embedding of the last predicted word, and predicts a distribution over
the possible output symbols from which we can choose or sample the next out-
put symbol. The only difference from a vanilla RNN language model is that
it is initialized or fed with the last annotation vector f| r| produced by the en-
coder. Specifically, the decoder may include an RNN which is initialized with
ﬁ F|» whose input is the output word embedding which corresponds to the pre-
viously predicted word ¢; 1 and whose output is s; € RPeutput;

St = RNN(Sf—lletlf|F|) (2.7)

We will then project s; to the size of the output vocabulary |Zoutput| using a
learned projection matrix W € R Poutput < [Zoutput|, and apply the softmax function

(b € [Zoutput| is a bias parameter):
g(f,e<,0) = softmax(s;W + b) (2.8)
where softmax(x) is defined as:

ex,‘ k
T,softmax :RF — {z e RF, z; >0, Zzi = 1} (2.9)
i=1

) e
=1

softmax(x); =
j

given the above, we can estimate the probability of a translation given the
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input sentence and the network’s parameters using the chain rule:

E|

p(EIF,0) = plevex,es, .- e\ fi far far- -0 fir) = [ [ pletl oy e<e, 6) (2.10)
t=1

2.2.5 The Attention Mechanism

While relatively simple, the above approach creates an “information bottle-
neck” since both long and short sentences need to be “compressed” into a sin-
gle fixed-sized encoding vector. To alleviate this, the attention mechanism was
introduced (Bahdanau et al., 2015), proposing a new approach for using the
annotation vectors produced by the encoder. Instead of using only the last an-
notation vector f| F| in the decoder, we compute at each time step f a new context

vector c¢;, which is a weighted sum over all of the inputs annotation vectors:

|F|
¢t = Y ajifi, c; € RPoupe (2.11)
i=1
where:
|F|
Y ay=1 (2.12)
i=1

since each w;; value is a result of a softmax function over |F| e;; values. An im-
portant question in the attention mechanism is how to compute those e;; values,
or attention weights, which are scalars that can be interpreted as the importance
of the annotation vector f; in the prediction of the output distribution in time
step t. We will mention two popular methods here:

¢ Feed Forward Attention also known as concat attention or MLP attention.

In this case the e;; values are computed using a feedforward network!:

e = a(sy, fi) = v, tanh(W,][ss, fi]) (2.13)

!In the original paper ((Bahdanau et al., 2015)) the attention weights were computed using
s¢—1. We show the version of Loung et al. (Luong et al., 2015b) which uses s; instead.
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* Dot-Product Attention here the ¢;; vectors are computed using a dot prod-
uct between the decoder state and the annotation vector:

e = a(si, fi) = s/ f; (2.14)

We then use this context vector ¢; when computing the output distribution

in each time step. For example in Luong et al. (2015b) this was done by:

plet| fip e<t, 0) = g(f, et ¢1,0) = softmax(W; tanh (W, [¢c;, s¢]))  (2.15)

Where W, € R /Zoutput| x2Doutpur W ¢ RZPoutput *2Doutput qre model parameters.

2.2.6 Training Objective

In order to train an NMT system, the most popular objective is cross-entropy
(a.k.a. negative log-likelihood), where we try to minimize the following term:

L= ) ) —logpletlfip et ) (2.16)

(f.e)€etrain er€e

Note that this is usually optimized using Stochastic Gradient Descent (SGD),
where we take the derivative of the objective w.r.t. the model parameters and
update them by taking a step in the direction of the derivative. Another thing
to note is that in SGD we do not compute the objective over the entire training

set, but over a single example or a mini-batch.

2.2.7 Inference and Beam-search

Once we have a trained model as described above, how do we predict transla-

tions for a given source-language sentence using this model? As we noted in
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the beginning of this section, our goal is to find:

E = argmaxp(E|F,6) (2.17)
E

or according to our modeling:

E|
E= arg;naxn p(et| frp e<t,0) (2.18)
t=1
note that this arg max operation requires a search over an exponentially large
space, as for each position in the output sequence we have |Z,,¢put| options to
choose from (O(|Zoutput|”) where 1 is the maximum sentence length.) Since
searching over this entire space is intractable, heuristic search methods like
Greedy-search or Beam-search are used.

In Greedy-search, we will choose the most probable word in each time step
according to our model. While this method is relatively fast as it decodes in
O(|Zoutput| - n), it may result in sub-optimal translations since an early word-
choice error may lead us to more mistakes down the line (as the next words

depend on the previously selected words - an “auto-regressive” model).

A common approach to alleviate this issue is Beam-search. In Beam-search,
we begin with an empty hypothesis and extend it by choosing the K words
which will lead us to the K-highest scoring partial hypotheses. Then, in the next
time step, we will expand each of these K-best hypotheses and again choose a
new set of K-best partial hypotheses. We will continue iterating this process
until all the K-best hypotheses in the end of the iteration are complete hypothe-
ses (i.e. hypotheses that end in an end-of-sequence symbol). This K constant is
called the “beam size”. See Figure 2.2 for an example of a beam search proce-
dure from an NMT system.?

2This figure was generated using the Nematus NMT toolkit (Sennrich et al., 2017).
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Figure 2.2: Example Beam-search graph from a German-to-English NMT
system, where the beam size is set to 10. Each node corresponds to a partial
hypothesis, and leaves correspond to complete hypotheses. Nodes in light
blue are participating in the highest-scored complete hypothesis. The number
to the right of each word is the probability of the word according to the local
softmax computation in this time step. The numbers beneath each word is the
negative log-likelihood of the partial hypothesis that ends in this word.
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Abstract

We present a neural model for morpho-
logical inflection generation which em-
ploys a hard attention mechanism, inspired
by the nearly-monotonic alignment com-
monly found between the characters in
a word and the characters in its inflec-
tion. We evaluate the model on three pre-
viously studied morphological inflection
generation datasets and show that it pro-
vides state of the art results in various se-
tups compared to previous neural and non-
neural approaches. Finally we present an
analysis of the continuous representations
learned by both the hard and soft atten-
tion (Bahdanau et al., 2015) models for the
task, shedding some light on the features
such models extract.

1 Introduction

Morphological inflection generation involves gen-
erating a target word (e.g. “hirtestem”, the
German word for “hardest”), given a source
word (e.g. “hart”, the German word for
“hard”) and the morpho-syntactic attributes of
the target (POS=adjective, gender=masculine,
type=superlative, etc.).

The task is important for many down-stream
NLP tasks such as machine translation, especially
for dealing with data sparsity in morphologically
rich languages where a lemma can be inflected
into many different word forms. Several studies
have shown that translating into lemmas in the tar-
get language and then applying inflection gener-
ation as a post-processing step is beneficial for
phrase-based machine translation (Minkov et al.,
2007; Toutanova et al., 2008; Clifton and Sarkar,
2011; Fraser et al., 2012; Chahuneau et al., 2013)

and more recently for neural machine translation
(Garcia-Martinez et al., 2016).

The task was traditionally tackled with hand en-
gineered finite state transducers (FST) (Kosken-
niemi, 1983; Kaplan and Kay, 1994) which rely
on expert knowledge, or using trainable weighted
finite state transducers (Mohri et al., 1997; Eisner,
2002) which combine expert knowledge with data-
driven parameter tuning. Many other machine-
learning based methods (Yarowsky and Wicen-
towski, 2000; Dreyer and Eisner, 2011; Durrett
and DeNero, 2013; Hulden et al., 2014; Ahlberg
etal., 2015; Nicolai et al., 2015) were proposed for
the task, although with specific assumptions about
the set of possible processes that are needed to cre-
ate the output sequence.

More recently, the task was modeled as neu-
ral sequence-to-sequence learning over character
sequences with impressive results (Faruqui et al.,
2016). The vanilla encoder-decoder models as
used by Faruqui et al. compress the input sequence
to a single, fixed-sized continuous representation.
Instead, the soft-attention based sequence to se-
quence learning paradigm (Bahdanau et al., 2015)
allows directly conditioning on the entire input se-
quence representation, and was utilized for mor-
phological inflection generation with great success
(Kann and Schiitze, 2016b,a).

However, the neural sequence-to-sequence
models require large training sets in order to per-
form well: their performance on the relatively
small CELEX dataset is inferior to the latent vari-
able WEST model of Dreyer et al. (2008). Inter-
estingly, the neural WFST model by Rastogi et al.
(2016) also suffered from the same issue on the
CELEX dataset, and surpassed the latent variable
model only when given twice as much data to train
on.

We propose a model which handles the above
issues by directly modeling an almost monotonic
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alignment between the input and output charac-
ter sequences, which is commonly found in the
morphological inflection generation task (e.g. in
languages with concatenative morphology). The
model consists of an encoder-decoder neural net-
work with a dedicated control mechanism: in each
step, the model attends to a single input state and
either writes a symbol to the output sequence or
advances the attention pointer to the next state
from the bi-directionally encoded sequence, as de-
scribed visually in Figure 1.

This modeling suits the natural monotonic
alignment between the input and output, as the
network learns to attend to the relevant inputs be-
fore writing the output which they are aligned
to. The encoder is a bi-directional RNN, where
each character in the input word is represented
using a concatenation of a forward RNN and a
backward RNN states over the word’s characters.
The combination of the bi-directional encoder and
the controllable hard attention mechanism enables
to condition the output on the entire input se-
quence. Moreover, since each character represen-
tation is aware of the neighboring characters, non-
monotone relations are also captured, which is im-
portant in cases where segments in the output word
are a result of long range dependencies in the in-
put word. The recurrent nature of the decoder, to-
gether with a dedicated feedback connection that
passes the last prediction to the next decoder step
explicitly, enables the model to also condition the
current output on all the previous outputs at each
prediction step.

The hard attention mechanism allows the net-
work to jointly align and transduce while us-
ing a focused representation at each step, rather
then the weighted sum of representations used in
the soft attention model. This makes our model
Resolution Preserving (Kalchbrenner et al., 2016)
while also keeping decoding time linear in the
output sequence length rather than multiplicative
in the input and output lengths as in the soft-
attention model. In contrast to previous sequence-
to-sequence work, we do not require the training
procedure to also learn the alignment. Instead, we
use a simple training procedure which relies on
independently learned character-level alignments,
from which we derive gold transduction+control
sequences. The network can then be trained using
straightforward cross-entropy loss.

To evaluate our model, we perform extensive

experiments on three previously studied morpho-
logical inflection generation datasets: the CELEX
dataset (Baayen et al., 1993), the Wiktionary
dataset (Durrett and DeNero, 2013) and the SIG-
MORPHON2016 dataset (Cotterell et al., 2016).
We show that while our model is on par with
or better than the previous neural and non-neural
state-of-the-art approaches, it also performs sig-
nificantly better with very small training sets, be-
ing the first neural model to surpass the perfor-
mance of the weighted FST model with latent vari-
ables which was specifically tailored for the task
by Dreyer et al. (2008). Finally, we analyze and
compare our model and the soft attention model,
showing how they function very similarly with re-
spect to the alignments and representations they
learn, in spite of our model being much simpler.
This analysis also sheds light on the representa-
tions such models learn for the morphological in-
flection generation task, showing how they encode
specific features like a symbol’s type and the sym-
bol’s location in a sequence.

To summarize, our contributions in this paper
are three-fold:

1. We present a hard attention model for nearly-
monotonic sequence to sequence learning, as
common in the morphological inflection set-
ting.

2. We evaluate the model on the task of mor-
phological inflection generation, establishing
a new state of the art on three previously-
studied datasets for the task.

3. We perform an analysis and comparison of
our model and the soft-attention model, shed-
ding light on the features such models extract
for the inflection generation task.

2 The Hard Attention Model

2.1 Motivation

We would like to transduce an input sequence,
Z1m, € X into an output sequence, Yi.q, € E;,
where X, and X, are the input and output vo-
cabularies, respectively. Imagine a machine with
read-only random access to the encoding of the in-
put sequence, and a single pointer that determines
the current read location. We can then model se-
quence transduction as a series of pointer move-
ment and write operations. If we assume the align-
ment is monotone, the machine can be simpli-
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fied: the memory can be read in sequential or-
der, where the pointer movement is controlled by
a single “move forward” operation (step) which
we add to the output vocabulary. We implement
this behavior using an encoder-decoder neural net-
work, with a control mechanism which determines
in each step of the decoder whether to write an
output symbol or promote the attention pointer the
next element of the encoded input.

2.2 Model Definition

In prediction time, we seek the output sequence
Y1:m € EZ, for which:

Yi:m = al"gmaxp(y,\ﬂﬁlzm f) (1)
y'exy

Where x € X7 is the input sequence and f =
{f1,..., fi} is a set of attributes influencing the
transduction task (in the inflection generation task
these would be the desired morpho-syntactic at-
tributes of the output sequence). Given a nearly-
monotonic alignment between the input and the
output, we replace the search for a sequence of let-
ters with a sequence of actions s1., € X5, where
¥ = X, U {step}. This sequence is a series of
step and write actions required to go from z1.,
to y1.., according to the monotonic alignment be-
tween them (we will elaborate on the determinis-
tic process of getting s1., from a monotonic align-
ment between x1., to y1.,, in section 2.4). In this
case we define: !

81:q = arg maxp(8/|1’1:n> f) (2)
s'exy

= argmax H p(sils) ... st 1, Z1m, f)
s'ex; sies’

which we can estimate using a neural network:

51:¢ = arg max NN(z1.p, f, ©) 3)
s'exy

where the network’s parameters © are learned us-
ing a set of training examples. We will now de-
scribe the network architecture.

"We note that our model (Eq. 2) solves a different ob-
jective than (Eq 1), as it searches for the best derivation and
not the best sequence. In order to accurately solve (1) we
would need to marginalize over the different derivations lead-
ing to the same sequence, which is computationally challeng-
ing. However, as we see in the experiments section, the best-
derivation approximation is effective in practice.

Yi:m n [e}

Sl:q <w> step n o step o)

_ pos=V
_ mood=IMPER
—— num=PL

" aspect=IPFV

Tim <> N € T b <w

Figure 1: The hard attention network architecture.
A round tip expresses concatenation of the inputs
it receives. The attention is promoted to the next
input element once a step action is predicted.

2.3 Network Architecture

Notation We use bold letters for vectors and ma-
trices. We treat LSTM as a parameterized func-
tion LSTMpy(x; ...x,) mapping a sequence of
input vectors X ...X, to a an output vector h,,.
The equations for the LSTM variant we use are
detailed in the supplementary material of this pa-
per.

Encoder For every element in the input sequence:
Tl = T1...Tn, we take the corresponding em-
bedding: e;, ...e;, , where: e, € RE. These
embeddings are parameters of the model which
will be learned during training. We then feed
the embeddings into a bi-directional LSTM en-
coder (Graves and Schmidhuber, 2005) which re-
sults in a sequence of vectors: x1., = X1 ...Xp,
where each vector x; € R2H is a concate-
nation of: LSTMf¢orward (€2, €1y, - - - €,) and
LSTMypackward(€z,,, €z, ; - - - €z, ), the forward
LSTM and the backward LSTM outputs when fed
with e, .

Decoder Once the input sequence is encoded, we
feed the decoder RNN, LSTM 4ec, with three in-
puts at each step:

1. The current attended input, x, € R, ini-
tialized with the first element of the encoded
sequence, X .

2. A set of embeddings for the attributes that in-
fluence the generation process, concatenated
to a single vector: f = [f; ... f;] € RF".,

3. s;_1 € RE, which is an embedding for the
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predicted output symbol in the previous de-
coder step.

Those three inputs are concatenated into a single
vector z; = [Xq, f,s;_1] € REZFFIHE which is
fed into the decoder, providing the decoder output
vector: LSTMgec(2z1 ...2;) € RY. Finally, to
model the distribution over the possible actions,
we project the decoder output to a vector of |¥g
elements, followed by a softmax layer:

p(si =c) (4)
= softmaz (W - LSTMgec(21 - ..2;) + b)

Control Mechanism When the most probable ac-
tion is step, the attention is promoted so x, con-
tains the next encoded input representation to be
used in the next step of the decoder. The process
is demonstrated visually in Figure 1.

2.4 Training the Model

For every example: (Z1.,,Y1:m, f) in the train-
ing data, we should produce a sequence of step
and write actions s1., to be predicted by the de-
coder. The sequence is dependent on the align-
ment between the input and the output: ideally,
the network will attend to all the input characters
aligned to an output character before writing it.
While recent work in sequence transduction ad-
vocate jointly training the alignment and the de-
coding mechanisms (Bahdanau et al., 2015; Yu
et al., 2016), we instead show that in our case it
is worthwhile to decouple these stages and learn
a hard alignment beforehand, using it to guide the
training of the encoder-decoder network and en-
abling the use of correct alignments for the at-
tention mechanism from the beginning of the net-
work training phase. Thus, our training procedure
consists of three stages: learning hard alignments,
deriving oracle actions from the alignments, and
learning a neural transduction model given the or-
acle actions.

Learning Hard Alignments We use the character
alignment model of Sudoh et al. (2013), based on a
Chinese Restaurant Process which weights single
alignments (character-to-character) in proportion
to how many times such an alignment has been
seen elsewhere out of all possible alignments. The
aligner implementation we used produces either 0-
to-1, 1-to-0 or 1-to-1 alignments.

Deriving Oracle Actions We infer the sequence
of actions s1., from the alignments by the deter-
ministic procedure described in Algorithm 1. An

example of an alignment with the resulting oracle
action sequence is shown in Figure 2, where a4 is
a 0-to-1 alignment and the rest are 1-to-1 align-
ments.

Tlmn <> e T b <s>
|CL1 | ap | as |(L4 |(L;, |u(, |CL7
Y1:m <s> M O N T e <s>

Sliq <S> step [1 step QO V] step T step @ step </5>

Figure 2: Top: an alignment between a lemma
x1., and an inflection y;.,, as predicted by the
aligner. Bottom: s1.4, the sequence of actions to
be predicted by the network, as produced by Al-
gorithm 1 for the given alignment.

Algorithm 1 Generates the oracle action sequence
51:¢ from the alignment between x1.,, and y1.,,

Require: a, the list of either 1-to-1, 1-to-0 or 0-
to-1 alignments between 1., and y1.,

. Initialize s as an empty sequence

: for each a; = (z4,,Y4,) € a do

if a; is a 1-to-0 alignment then
s.append(step)

else
s.append(yq;)
if a;11 is not a 0-to-1 alignment then

s.append(step)
return s

AN A ol A

This procedure makes sure that all the source
input elements aligned to an output element are
read (using the step action) before writing it.
Learning a Neural Transduction Model The
network is trained to mimic the actions of the ora-
cle, and at inference time, it will predict the actions
according to the input. We train it using a conven-
tional cross-entropy loss function per example:

E(l'l:na Y1:m, fa @) = - Z IOg Softmaij (d)7

S]'Gsl;q

d=W-. LSTMdeC(Zl cen ZZ') +b (5)

Transition System An alternative view of our
model is that of a transition system with AD-
VANCE and WRITE(CH) actions, where the oracle
is derived from a given hard alignment, the input
is encoded using a biRNN, and the next action is
determined by an RNN over the previous inputs
and actions.
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3 Experiments

We perform extensive experiments with three pre-
viously studied morphological inflection genera-
tion datasets to evaluate our hard attention model
in various settings. In all experiments we com-
pare our hard attention model to the best per-
forming neural and non-neural models which were
previously published on those datasets, and to
our implementation of the global (soft) attention
model presented by Luong et al. (2015) which we
train with identical hyper-parameters as our hard-
attention model. The implementation details for
our models are described in the supplementary
material section of this paper. The source code
and data for our models is available on github.?

CELEX Our first evaluation is on a very small
dataset, to see if our model indeed avoids the ten-
dency to overfit with small training sets. We re-
port exact match accuracy on the German inflec-
tion generation dataset compiled by Dreyer et al.
(2008) from the CELEX database (Baayen et al.,
1993). The dataset includes only 500 training
examples for each of the four inflection types:
13SIA—13SKE, 2PIE—13PKE, 2PKE—z, and
rP—pA which we refer to as 13SIA, 2PIE, 2PKE
and P, respectively.> We first compare our model
to three competitive models from the literature that
reported results on this dataset: the Morphologi-
cal Encoder-Decoder (MED) of Kann and Schiitze
(2016a) which is based on the soft-attention model
of Bahdanau et al. (2015), the neural-weighted
FST of Rastogi et al. (2016) which uses stacked
bi-directional LSTM’s to weigh its arcs (NWFST),
and the model of Dreyer et al. (2008) which uses
a weighted FST with latent-variables structured
particularly for morphological string transduction
tasks (LAT). Following previous reports on this
dataset, we use the same data splits as Dreyer et al.
(2008), dividing the data for each inflection type
into five folds, each consisting of 500 training,
1000 development and 1000 test examples. We
train a separate model for each fold and report ex-
act match accuracy, averaged over the five folds.

https://github.com/roeeaharoni/
morphological-reinflection

3The acronyms stand for: 13SIA=1st/3rd person, singular,
indefinite, past;13SKE=1st/3rd person, subjunctive, present;
2PIE=2nd person, plural, indefinite, present;13PKE=1st/3rd
person, plural, subjunctive, present; 2PKE=2nd person, plu-
ral, subjunctive, present; z=infinitive; rP=imperative, plural;
pA=past participle.

Wiktionary To neutralize the negative effect of
very small training sets on the performance of
the different learning approaches, we also evalu-
ate our model on the dataset created by Durrett
and DeNero (2013), which contains up to 360k
training examples per language. It was built by
extracting Finnish, German and Spanish inflection
tables from Wiktionary, used in order to evalu-
ate their system based on string alignments and
a semi-CRF sequence classifier with linguistically
inspired features, which we use a baseline. We
also used the dataset expansion made by Nicolai
et al. (2015) to include French and Dutch inflec-
tions as well. Their system also performs an align-
and-transduce approach, extracting rules from the
aligned training set and applying them in inference
time with a proprietary character sequence classi-
fier. In addition to those systems we also com-
pare to the results of the recent neural approach
of Faruqui et al. (2016), which did not use an at-
tention mechanism, and Yu et al. (2016), which
coupled the alignment and transduction tasks.

SIGMORPHON As different languages show
different morphological phenomena, we also ex-
periment with how our model copes with these
various phenomena using the morphological in-
flection dataset from the SIGMORPHON2016
shared task (Cotterell et al., 2016). Here the
training data consists of ten languages, with five
morphological system types (detailed in Table 3):
Russian (RU), German (DE), Spanish (ES), Geor-
gian (GE), Finnish (FI), Turkish (TU), Arabic
(AR), Navajo (NA), Hungarian (HU) and Maltese
(MA) with roughly 12,800 training and 1600 de-
velopment examples per language. We compare
our model to two soft attention baselines on this
dataset: MED (Kann and Schiitze, 2016b), which
was the best participating system in the shared
task, and our implementation of the global (soft)
attention model presented by Luong et al. (2015).

4 Results

In all experiments, for both the hard and soft at-
tention models we implemented, we report results
using an ensemble of 5 models with different ran-
dom initializations by using majority voting on the
final sequences the models predicted, as proposed
by Kann and Schiitze (2016a). This was done to
perform fair comparison to the models of Kann
and Schiitze (2016a,b); Faruqui et al. (2016) which
we compare to, that also perform a similar ensem-
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13SIA | 2PIE | 2PKE | rP Avg.
MED (Kann and Schiitze, 2016a) | 83.9 95 87.6 84 87.62
NWFST (Rastogi et al., 2016) 86.8 948 | 87.9 81.1 | 87.65
LAT (Dreyer et al., 2008) 87.5 934 | 874 849 | 88.3
Soft 83.1 93.8 | 88 83.2 | 87
Hard 85.8 95.1 | 89.5 87.2 | 89.44
Table 1: Results on the CELEX dataset
DE-N | DE-V | ES-V | FI-NA | FI-V | FR-V | NL-V | Avg.
Durrett and DeNero (2013) | 88.31 | 94.76 | 99.61 | 92.14 | 97.23 | 98.80 | 90.50 | 94.47
Nicolai et al. (2015) 88.6 97.50 | 99.80 | 93.00 98.10 | 99.20 | 96.10 | 96.04
Faruqui et al. (2016) 88.12 | 97.72 | 99.81 | 95.44 97.81 | 98.82 | 96.71 | 96.34
Yu et al. (2016) 87.5 92.11 | 99.52 | 95.48 98.10 | 98.65 | 95.90 | 95.32
Soft 88.18 | 95.62 | 99.73 | 93.16 97.74 | 98.79 | 96.73 | 95.7
Hard 88.87 | 97.35 | 99.79 | 95.75 98.07 | 99.04 | 97.03 | 96.55
Table 2: Results on the Wiktionary datasets
suffixing+stem changes | circ. suffixing+agg.+v.h. c.h. templatic
RU DE ES GE FI TU HU NA AR MA Avg.
MED | 9146 | 95.8 98.84 | 98.5 95.47 | 98.93 | 96.8 91.48 | 99.3 88.99 | 95.56
Soft 92.18 | 96.51 | 98.88 | 98.88 | 96.99 | 99.37 | 97.01 | 9541 | 99.3 88.86 | 96.34
Hard | 92.21 | 96.58 | 98.92 | 98.12 | 9591 | 97.99 | 96.25 | 93.01 | 98.77 | 88.32 | 95.61

Table 3: Results on the SIGMORPHON 2016 morphological inflection dataset. The text above each lan-
guage lists the morphological phenomena it includes: circ.=circumfixing, agg.=agglutinative, v.h.=vowel

harmony, c.h.=consonant harmony

bling technique.

On the low resource setting (CELEX), our hard
attention model significantly outperforms both the
recent neural models of Kann and Schiitze (2016a)
(MED) and Rastogi et al. (2016) (NWFST) and the
morphologically aware latent variable model of
Dreyer et al. (2008) (LAT), as detailed in Table
1. In addition, it significantly outperforms our
implementation of the soft attention model (Soft).
It is also, to our knowledge, the first model that
surpassed in overall accuracy the latent variable
model on this dataset. We attribute our advantage
over the soft attention models to the ability of the
hard attention control mechanism to harness the
monotonic alignments found in the data. The ad-
vantage over the FST models may be explained by
our conditioning on the entire output history which
is not available in those models. Figure 3 plots
the train-set and dev-set accuracies of the soft and
hard attention models as a function of the training
epoch. While both models perform similarly on
the train-set (with the soft attention model fitting it
slightly faster), the hard attention model performs
significantly better on the dev-set. This shows the
soft attention model’s tendency to overfit on the

small dataset, as it is not enforcing the monotonic
assumption of the hard attention model.

On the large training set experiments (Wik-
tionary), our model is the best performing model
on German verbs, Finnish nouns/adjectives and
Dutch verbs, resulting in the highest reported av-
erage accuracy across all inflection types when
compared to the four previous neural and non-
neural state of the art baselines, as detailed in Ta-
ble 2. This shows the robustness of our model
also with large amounts of training examples,
and the advantage the hard attention mechanism
provides over the encoder-decoder approach of
Faruqui et al. (2016) which does not employ an
attention mechanism. Our model is also signifi-
cantly more accurate than the model of Yu et al.
(2016), which shows the advantage of using in-
dependently learned alignments to guide the net-
work’s attention from the beginning of the training
process. While our soft-attention implementation
outperformed the models of Yu et al. (2016) and
Durrett and DeNero (2013), it still performed in-
feriorly to the hard attention model.

As can be seen in Table 3, on the SIG-
MORPHON 2016 dataset our model performs
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Figure 3: Learning curves for the soft and hard
attention models on the first fold of the CELEX
dataset

better than both soft-attention baselines for the
suffixing+stem-change languages (Russian, Ger-
man and Spanish) and is slightly less accurate than
our implementation of the soft attention model on
the rest of the languages, which is now the best
performing model on this dataset to our knowl-
edge. We explain this by looking at the languages
from a linguistic typology point of view, as de-
tailed in Cotterell et al. (2016). Since Russian,
German and Spanish employ a suffixing morphol-
ogy with internal stem changes, they are more suit-
able for monotonic alignment as the transforma-
tions they need to model are the addition of suf-
fixes and changing characters in the stem. The
rest of the languages in the dataset employ more
context sensitive morphological phenomena like
vowel harmony and consonant harmony, which re-
quire to model long range dependencies in the in-
put sequence which better suits the soft attention
mechanism. While our implementation of the soft
attention model and MED are very similar model-
wise, we hypothesize that our soft attention model
results are better due to the fact that we trained
the model for 100 epochs and picked the best per-
forming model on the development set, while the
MED system was trained for a fixed amount of 20
epochs (although trained on more data — both train
and development sets).

5 Analysis

The Learned Alignments In order to see if the
alignments predicted by our model fit the mono-

Figure 4: A comparison of the alignments as pre-
dicted by the soft attention (left) and the hard at-
tention (right) models on examples from CELEX.

tonic alignment structure found in the data, and
whether are they more suitable for the task when
compared to the alignments found by the soft at-
tention model, we examined alignment predictions
of the two models on examples from the develop-
ment portion of the CELEX dataset, as depicted in
Figure 4. First, we notice the alignments found
by the soft attention model are also monotonic,
supporting our modeling approach for the task.
Figure 4 (bottom-right) also shows how the hard-
attention model performs deletion (legte—lege)
by predicting a sequence of two step operations.
Another notable morphological transformation is
the one-to-many alignment, found in the top exam-
ple: flog—fliege, where the model needs to trans-
form a character in the input, o, to two characters
in the output, ie. This is performed by two consec-
utive write operations after the sfep operation of
the relevant character to be replaced. Notice that
in this case, the soft attention model performs a
different alignment by aligning the character i to
o and the character g to the sequence eg, which
is not the expected alignment in this case from a
linguistic point of view.

The Learned Representations How does the
soft-attention model manage to learn nearly-
perfect monotonic alignments? Perhaps the the
network learns to encode the sequential position
as part of its encoding of an input element? More
generally, what information is encoded by the soft
and hard alignment encoders? We selected 500
random encoded characters-in-context from input
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(d) Colors indicate the character’s position.

Figure 5: SVD dimension reduction to 2D of 500 character representations in context from the encoder,
for both the soft attention (top) and hard attention (bottom) models.

words in the CELEX development set, where ev-
ery encoded representation is a vector in R200.
Since those vectors are outputs from the bi-LSTM
encoders of the models, every vector of this form
carries information of the specific character with
its entire context. We project these encodings into
2-D using SVD and plot them twice, each time
using a different coloring scheme. We first color
each point according to the character it represents
(Figures 5a, 5b). In the second coloring scheme
(Figures 5c, 5d), each point is colored according
to the character’s sequential position in the word it
came from, blue indicating positions near the be-
ginning of the word, and red positions near its end.

While both models tend to cluster representa-
tions for similar characters together (Figures Sa,
5b), the hard attention model tends to have much
more isolated character clusters. Figures Sc, 5d
show that both models also tend to learn represen-
tations which are sensitive to the position of the
character, although it seems that here the soft at-
tention model is more sensitive to this information
as its coloring forms a nearly-perfect red-to-blue
transition on the X axis. This may be explained
by the soft-attention mechanism encouraging the

encoder to encode positional information in the
input representations, which may help it to pre-
dict better attention scores, and to avoid collisions
when computing the weighted sum of representa-
tions for the context vector. In contrast, our hard-
attention model has other means of obtaining the
position information in the decoder using the step
actions, and for that reason it does not encode it
as strongly in the representations of the inputs.
This behavior may allow it to perform well even
with fewer examples, as the location information
is represented more explicitly in the model using
the step actions.

6 Related Work

Many previous works on inflection generation
used machine learning methods (Yarowsky and
Wicentowski, 2000; Dreyer and Eisner, 2011;
Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015) with
assumptions about the set of possible processes
needed to create the output word. Our work was
mainly inspired by Faruqui et al. (2016) which
trained an independent encoder-decoder neural
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network for every inflection type in the training
data, alleviating the need for feature engineering.
Kann and Schiitze (2016b,a) tackled the task with
a single soft attention model (Bahdanau et al.,
2015) for all inflection types, which resulted in
the best submission at the SIGMORPHON 2016
shared task (Cotterell et al., 2016). In another
closely related work, Rastogi et al. (2016) model
the task with a WEST in which the arc weights
are learned by optimizing a global loss function
over all the possible paths in the state graph, while
modeling contextual features with bi-directional
LSTMS. This is similar to our approach, where
instead of learning to mimic a single greedy align-
ment as we do, they sum over all possible align-
ments. While not committing to a single greedy
alignment could in theory be beneficial, we see
in Table 1 that—at least for the low resource
scenario—our greedy approach is more effective
in practice. Another recent work (Kann et al.,
2016) proposed performing neural multi-source
morphological reinflection, generating an inflec-
tion from several source forms of a word.

Previous works on neural sequence transduc-
tion include the RNN Transducer (Graves, 2012)
which uses two independent RNN’s over mono-
tonically aligned sequences to predict a distribu-
tion over the possible output symbols in each step,
including a null symbol to model the alignment.
Yu et al. (2016) improved this by replacing the null
symbol with a dedicated learned transition proba-
bility. Both models are trained using a forward-
backward approach, marginalizing over all possi-
ble alignments. Our model differs from the above
by learning the alignments independently, thus en-
abling a dependency between the encoder and de-
coder. While providing better results than Yu et al.
(2016), this also simplifies the model training us-
ing a simple cross-entropy loss. A recent work by
Raffel et al. (2017) jointly learns the hard mono-
tonic alignments and transduction while maintain-
ing the dependency between the encoder and the
decoder. Jaitly et al. (2015) proposed the Neural
Transducer model, which is also trained on exter-
nal alignments. They divide the input into blocks
of a constant size and perform soft attention sepa-
rately on each block. Lu et al. (2016) used a com-
bination of an RNN encoder with a CRF layer to
model the dependencies in the output sequence.
An interesting comparison between traditional”
sequence transduction models (Bisani and Ney,

2008; Jiampojamarn et al., 2010; Novak et al.,
2012) and encoder-decoder neural networks for
monotone string transduction tasks was done by
Schnober et al. (2016), showing that in many cases
there is no clear advantage to one approach over
the other.

Regarding task-specific improvements to the at-
tention mechanism, a line of work on attention-
based speech recognition (Chorowski et al., 2015;
Bahdanau et al., 2016) proposed adding location
awareness by using the previous attention weights
when computing the next ones, and preventing
the model from attending on too many or too
few inputs using “sharpening” and “smoothing”
techniques on the attention weight distributions.
Cohn et al. (2016) offered several changes to the
attention score computation to encourage well-
known modeling biases found in traditional ma-
chine translation models like word fertility, po-
sition and alignment symmetry. Regarding the
utilization of independent alignment models for
training attention-based networks, Mi et al. (2016)
showed that the distance between the attention-
infused alignments and the ones learned by an in-
dependent alignment model can be added to the
networks’ training objective, resulting in an im-
proved translation and alignment quality.

7 Conclusion

We presented a hard attention model for mor-
phological inflection generation. The model em-
ploys an explicit alignment which is used to train
a neural network to perform transduction by de-
coding with a hard attention mechanism. Our
model performs better than previous neural and
non-neural approaches on various morphological
inflection generation datasets, while staying com-
petitive with dedicated models even with very few
training examples. It is also computationally ap-
pealing as it enables linear time decoding while
staying resolution preserving, i.e. not requiring
to compress the input sequence to a single fixed-
sized vector. Future work may include apply-
ing our model to other nearly-monotonic align-
and-transduce tasks like abstractive summariza-
tion, transliteration or machine translation.
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Supplementary Material

Training Details, Implementation and Hyper
Parameters

To train our models, we used the train portion of
the datasets as-is and evaluated on the test portion
the model which performed best on the develop-
ment portion of the dataset, without conducting
any specific pre-processing steps on the data. We
train the models for a maximum of 100 epochs
over the training set. To avoid long training time,
we trained the model for 20 epochs for datasets
larger than 50k examples, and for 5 epochs for
datasets larger than 200k examples. The models
were implemented using the python bindings of
the dynet toolkit.*

We trained the network by optimizing the ex-
pected output sequence likelihood using cross-
entropy loss as mentioned in equation 5. For op-
timization we used ADADELTA (Zeiler, 2012)
without regularization. We updated the weights
after every example (i.e. mini-batches of size 1).
We used the dynet toolkit implementation of an
LSTM network with two layers for all models,
each having 100 entries in both the encoder and
decoder. The character embeddings were also vec-
tors with 100 entries for the CELEX experiments,
and with 300 entries for the SIGMORPHON and
Wiktionary experiments.

The morpho-syntactic attribute embeddings
were vectors of 20 entries in all experiments. We
did not use beam search while decoding for both
the hard and soft attention models as it is signif-
icantly slower and did not show clear improve-
ment in previous experiments we conducted. For
the character level alignment process we use the
implementation provided by the organizers of the
SIGMORPHON2016 shared task.’

LSTM Equations

We used the LSTM variant implemented in the
dynet toolkit, which corresponds to the following

*nttps://github.com/clab/dynet
Shttps://github.com/ryancotterell/
sigmorphon2016

equations:

it = o(Wipgxy + Wirhy_1 + Wieei_1 + by)
f; = U(foxt + thft—l + chct_l + bf)
¢ = tanh(We,x, + Wehy 1 + be)
ct=ci_10f,+coi
o = 0(Worxy + Wophy_ 1 + Woecp + by)
h; = tanh(c;) o oy

(6)
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Abstract

Morphological reinflection is the task of
generating a target form given a source
form and the morpho-syntactic attributes
of the target (and, optionally, of the
source). This work presents the sub-
mission of Bar Ilan University and the
Massachusetts Institute of Technology for
the morphological reinflection shared task
held at SIGMORPHON 2016. The sub-
mission includes two recurrent neural net-
work architectures for learning morpho-
logical reinflection from incomplete in-
flection tables while using several novel
ideas for this task: morpho-syntactic at-
tribute embeddings, modeling the concept
of templatic morphology, bidirectional in-
put character representations and neural
discriminative string transduction. The
reported results for the proposed models
over the ten languages in the shared task
bring this submission to the second/third
place (depending on the language) on all
three sub-tasks out of eight participating
teams, while training only on the Re-
stricted category data.

1 Introduction

Morphological inflection, or reinflection, involves
generating a target (surface form) word from a
source word (e.g. a lemma), given the morpho-
syntactic attributes of the target word. Previ-
ous approaches to automatic inflection generation
usually make use of manually constructed Finite
State Transducers (Koskenniemi, 1983; Kaplan
and Kay, 1994), which are theoretically appealing
but require expert knowledge, or machine learn-
ing methods for string transduction (Yarowsky
and Wicentowski, 2000; Dreyer and Eisner, 2011;
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Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015). While
these studies achieved high accuracies, they also
make specific assumptions about the set of pos-
sible morphological processes that create the in-
flection, and require feature engineering over the
input.

More recently, Faruqui et al. (2016) used
encoder-decoder neural networks for inflection
generation inspired by similar approaches for
sequence-to-sequence learning for machine trans-
lation (Bahdanau et al., 2014; Sutskever et al.,
2014). The general idea is to use an encoder-
decoder network over characters, that encodes the
input lemma into a vector and decodes it one char-
acter at a time into the inflected surface word.
They factor the data into sets of inflections with
identical morpho-syntactic attributes (we refer to
each such set as a factor) and try two training ap-
proaches: in one they train an individual encoder-
decoder RNN per factor, and in the other they train
a single encoder RNN over all the lemmas in the
dataset and a specific decoder RNN per factor.

An important aspect of previous work on learn-
ing inflection generation is the reliance on com-
plete inflection tables — the training data contains
all the possible inflections per lemma. In contrast,
in the shared task setup (Cotterell et al., 2016) the
training is over partial inflection tables that mostly
contain only several inflections per lemma, for
three different sub-tasks: The first requires mor-
phological inflection generation given a lemma
and a set of morpho-syntactic attributes, the sec-
ond requires morphological re-inflection of an in-
flected word given the word, its morpho-syntactic
attributes and the target inflection’s attributes, and
the third requires re-inflection of an inflected word
given only the target inflection attributes. The
datasets for the different tasks are available on the
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shared task’s website.!

The fact that the data is incomplete makes
it problematic to use factored models like the
ones introduced in (Faruqui et al., 2016), as
there may be insufficient data for training a high-
quality model per factor of inflections with identi-
cal morpho-syntactic attributes. For example, in
the shared task dataset the training data usually
contains less than 100 training examples on av-
erage per such factor. Moreover, when the data
is factored this way, no information is shared be-
tween the different factors even though they may
have identical inflection rules.

We propose two neural network architectures
for the task. The first, detailed in Section 2, de-
parts from the architecture of (Faruqui et al., 2016)
by extending it in three novel ways: represent-
ing morpho-syntactic attributes, template-inspired
modeling, and bidirectional input character repre-
sentations. The second, described in Section 3, is
based on an explicit control mechanism we intro-
duce while also making use of the three extensions
mentioned above. Our experimental evaluation
over all 10 languages represented in the shared
task brings our models to the second or third place,
depending on the language.

2 First Approach: Morphological
Sequence to Sequence Architecture

Our first proposed architecture is a Morphological
Sequence to Sequence (MS2S) architecture, illus-
trated in Figure 1. It incorporates several novel
components in the sequence-to-sequence learning
paradigm, as discussed below.

2.1

We seek to train models over larger amounts of ex-
amples, rather than on factors that strictly contain
examples that share all the morpho-syntactic at-
tributes. To do so, instead of factoring the data by
the attributes we feed the attributes into the net-
work by creating a dense embedding vector for
every possible attribute/value pair (for example,
gender=FEM and gender=MASC will each have
its own embedding vector). The attribute embed-
dings for each input are then concatenated and
added as parameters to the network while being
updated during training similarly to the character
embeddings. This way, information can be shared

Morpho-Syntactic Attribute Embeddings

"http://ryancotterell.github.io/
sigmorphon2016/
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Figure 1: The Morphological Sequence to Se-
quence (MS2S) network architecture for predict-
ing an inflection template given the Arabic lemma
tarjama and a set of morpho-syntactic attributes.
A round tip expresses concatenation of the inputs
it receives.

across inflections with different morpho-syntactic
attributes, as they are trained jointly, while the at-
tribute embeddings help discriminate between dif-
ferent inflection types when needed. This can be
seen in Figure 1, where f is the vector containing
a concatenation of the morpho-syntactic attribute
embeddings.

While this approach should allow us to train a
single neural network over the entire dataset to
predict all the different inflection types, in prac-
tice we were not able to successfully train such a
network. Instead, we found a middle ground in
training a network per part-of-speech (POS) type.
This resulted in much fewer models than in the
factored model, each using much more data, which
is essential when training machine learning mod-
els and specifically neural networks. For example,
on the Arabic dataset of the first sub task (inflec-
tion generation from lemma to word) this reduced
the amount of trained models from 223 with an av-
erage of 91 training examples per model, to only
3 models (one per POS type - verb, noun, adjec-
tive) with an average of 3907 training examples
per model.

2.2 Morphological Templates

We bring the idea of morphological templates into
the model: instead of training the network to pre-
dict only a specific inflection character at each step
given a lemma and a set of morpho-syntactic fea-
tures, we train the network to either predict a char-



acter from the vocabulary or to copy a character at
a given position in the input sequence. This en-
ables the network to produce a sequence that re-
sembles a morphological template which can be
instantiated with characters from the input to pro-
duce the correct inflection. While at train time we
encourage the network to perform copy operations
when possible, at prediction time the network can
decide whether to copy a character from the input
by predicting its location in the input or to generate
a preferred character from the vocabulary. For ex-
ample, for the Arabic lemma farjama and a set of
morpho-syntactic attributes the network will out-
put the sequence ’tu0123i5ani” which can be in-
stantiated with the lemma into the correct inflec-
tion, tutarjimani, as depicted in Figure 1.

Intuitively, this method enables the learning
process to generalize better as many different
examples may share similar templates — which
is important when working with relatively small
datasets. We saw indeed that adding this com-
ponent to our implementation of a factored model
similar to (Faruqui et al., 2016) gave a significant
improvement in accuracy over the Arabic dataset:
from 24.04 to 78.35, while the average number of
examples per factor was 91.

To implement this, for every given pair of in-
put and output sequences in the training set we
need to produce a parameterized sequence which,
when instantiated with the input sequence, creates
the output sequence. This is achieved by running
a character level alignment process on the train-
ing data, which enables to easily infer the desired
sequence from every input-output sequence align-
ment. For example, given the input sequences sab-
baba and output sequence tusabbiba with the in-
duced alignment eesabbaba-tusabbiba, we produce
the expected output: tu0123i53a, as depicted in the
next figure:

0123456
eesabbaba
111 ]1]]1]]2tuo123is5a
tusabbiba

Alignment Template

We performed the alignment process using a
Chinese Restaurant Process character level aligner
(Sudoh et al., 2013) as implemented in the shared
task baseline system.?

https://github.com/ryancotterell/
sigmorphon2016/tree/master/src/baseline

2.3 Bidirectional Input Character
Representation

Instead of feeding the decoder RNN at each step
with a fixed vector that holds the encoded vec-
tor for the entire input sequence like Faruqui et.
al. (2016), we feed the decoder RNN at each step
with a Bi-Directional Long-Short Term Memory
(BILSTM) representation (Graves and Schmidhu-
ber, 2005) per character in the input along with the
character embedding learned by the network. The
BiLSTM character representation is a concatena-
tion of the outputs of two LSTMs that run over
the character sequence up to the current charac-
ter, from both sides. This adds more focused con-
text when the network predicts the next inflection
output, while still including information form the
entire sequence due to the bidirectional represen-
tation.

2.4 MS2S Decoder Input

For every step 7 of the decoder RNN for this setup,
the input vector is a concatenation of the follow-
ing:

1. BiLST M; — The bidirectional character em-
bedding for the ith input character (if ¢ is
larger than the length of the input sequence,
the embedding of the last input character is
used).

2. ¢; —The character embedding for the ¢th input
character. If 7 is larger than the length of the
input sequence, an embedding of a special £
symbol is used, similarly to (Faruqui et al.,
2016).

3. % — A character embedding for the current
step index in the decoder. In the first step this
will be an embedding matching to ’0’, in the
second step it will an embedding matching to
"1’ etc. These are the same index embeddings
used to model copy actions from a specific in-
dex.

4. 0;—1 — The feedback input, containing the
embedding of the prediction (either a charac-
ter or an integer representing an index in the
input) from the previous decoder RNN step.

5. f — The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.



3 Second Approach: The Neural
Discriminative String Transducer
Architecture

The second approach is based on a Neural Dis-
criminative String Transducer (NDST), a novel
neural network architecture that models which
specific part of the input sequence is relevant for
predicting the next output character at a given
time. This is done by maintaining a state con-
sisting of an input sequence position (the input
pointer) and an output sequence position (the out-
put pointer), which are controlled by the decoder.
This approach can be seen as a more focused re-
placement to the general attention mechanism of
Bahdanau et. al. (2014), tailored to the usually
monotonic behavior of the output sequence with
respect to the input sequence in the morphological
reinflection task. An example for using this archi-
tecture is available in Figure 2.

3.1 NDST Decoder Input

For every step ¢ in the NDST decoder RNN, the
input vector is a concatenation of the following:

1. Pinput — The input pointer, holding the
embedding that represents the position of
the current pointed input sequence element.
When 7 = 0, this is initialized with the em-
bedding that stands for the position of the first
element in the input. Every time the network
outputs the “step” symbol, p;ppus 1s promoted
by setting it with the embedding that repre-
sents the next input sequence position.

. Poutput — The output pointer, a character em-
bedding representing the next position in the
output sequence to be generated. When ¢ =
0, this is initialized with the embedding that
stands for the position of the first element in
the input. Every time the network outputs a
symbol other than the “step” symbol, poutput
is promoted by setting it with the embedding
for the next output sequence position.

. BiLST My, — The bidirectional character
embedding for the input character currently

pointed by pinput-

. 0;—1 — The feedback input, containing the
embedding of the prediction (either a char-
acter, an integer representing an index in the
input, or the “step” symbol) from the previ-
ous decoder RNN step.
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Figure 2: The Neural Discriminative String Trans-
ducer (NDST) architecture for predicting an in-
flection template given a lemma and a set of
morpho-syntactic attributes.

_— pos=V
»_— mood=IMPER
% num=PL

— aspect=IPFV

5. f — The vector containing the concatena-
tion of the morpho-syntactic attribute embed-
dings.

To train an NDST network, for every input and
output sequence in the training data we should
have a sequence of actions (of three types — either
a specific character prediction, an index to copy
from or a “step” instruction) that when performed
on the input sequence, produces the correct output
sequence. To get the correct instruction sequences
in train time we first run a character level align-
ment process on the training data, similarly to the
MS2S model. Once we have the character level
alignment per input-output sequence pair, we de-
terministically infer the sequence of actions that
results in the desired output by going through ev-
ery pair of aligned input-output characters in the
alignment. If the input and output characters in the
aligned pair are not identical, we produce the new
output character. If the input and output characters
in the aligned pair are identical we produce a copy
action from the input character location. After
that, if the next output character is not the epsilon
symbol as seen in the alignment in Figure 2.2 we
also produce a “step” action. We train the network
to produce this sequence of actions when given the
input sequence and the set of morpho-syntactic at-
tributes matching the desired inflection.



4 Experimental Details

4.1 Submissions

The shared task allowed submissions in three dif-
ferent tracks: Standard, which enabled using data
from lower numbered tasks in addition to the cur-
rent task data; Restricted, which enabled using
only the current task’s data; and Bonus, which en-
abled using the Standard track datasets and an ad-
ditional monolingual corpus supplied by the orga-
nizers.

We submitted two systems to the shared task,
both in the Restricted track: The first, named
BIU/MIT-1, used the MS2S architecture as de-
scribed previously and participated in all three
sub-tasks. Notice that for the 3rd task, the in-
put is identical to the first task so it does not re-
quire changes in the network architecture. To use
the MS2S network for the second task we con-
catenated the source and target morpho-syntactic
attribute embeddings and used that vector as the
f vector mentioned previously. The output from
this system was 5-best lists, meaning 5 predictions
for each input. To produce the 5-best list we per-
form beam search over the MS2S model, which is
trained greedily without such search procedure.

The second system, named BIU/MIT-2, used
the NDST architecture and participated only in the
first and second sub-tasks. This system did not
use beam search, producing only one guess per in-
put. Again, to use the NDST architecture for the
second task we simply concatenated the input and
output morpho-syntactic attribute embeddings.

4.2 Training, Implementation and Hyper
Parameters

To train our systems, we used the train portion of
the dataset as-is and submitted the model which
performed best on the development portion of
the dataset, without conducting any specific pre-
processing steps on the data. We trained our net-
works for a maximum of 300 epochs over the en-
tire training set or until no improvement on the
development set has been observed for more than
100 epochs. The systems were implemented using
pyCNN, the python wrapper for the CNN toolkit.?
In both architectures we trained the network by
optimizing the expected output sequence likeli-
hood using cross-entropy loss. For optimization
we used ADAM (Kingma and Ba, 2014) with

Shttps://github.com/clab/cnn

45

no regularization, and the parameters set as o =
1074, 81 = 0.9, 0.999,¢ = 107%. 1In
all architectures we used the CNN toolkit imple-
mentation of an LSTM network with two layers,
each having 200 entries. The character embed-
dings were also vectors with 200 entries, and the
morpho-syntactic attribute embeddings were vec-
tors of 20 entries. When using beam search we
used a beam width of 5.

5 Results

While developing our systems we measured our
performance on the development set with respect
to two baselines: the shared task baseline sys-
tem (ST-Base) inspired by (Nicolai et al., 2015;
Durrett and DeNero, 2013), and the factored se-
quence to sequence baseline (Fact.) similar to the
one introduced in (Faruqui et al., 2016). On the
test set, our systems ranked second or third out of
eight groups in the shared task (depending on the
language). The best participating system, LMU-
1/2 (Kann and Schiitze, 2016) relied on a single
encoder-decoder model with attention (Bahdanau
et al., 2014) per language, with several improve-
ments like performing prediction using majority
voting over an ensemble of five models. In con-
trast, our first system did not use an explicit atten-
tion mechanism and is composed of 3 models per
language (one per POS type) without using ensem-
bling. We compare our system to the best system
on the test set.

The results for the first task are shown in Ta-
ble 1, measuring aggregated accuracy across all
POS tags. On the development set, our models
surpassed both baselines significantly and were
competitive with each other, as the MS2S model
gained the best aggregated accuracy results on
all languages but Russian and Finnish, where the
NDST model was better. On the test set, similar
results are shown: the MS2S model gives higher
accuracies except for Russian, Navajo and Maltese
where the NDST model was superior.

For the second task, we measured performance
only with respect to ST-Base as can be seen in Ta-
ble 2. On the development set, the NDST model
outperformed the baseline and the MS2S model
for all languages but Georgian and Spanish, where
the MS2S and ST-Base models were better, re-
spectively, although not with a significant differ-
ence. On the test set, the MS2S model gave better
results only for Georgian and Hungarian.



Table 1: Results for inflection generation (first sub-task), measuring accuracy on the development set:
our models vs. the shared task (ST-Base) and Factored (Fact.) baselines, and mean reciprocal rank
(MRR) on the test set: our models vs. the best performing model (Kann and Schiitze, 2016).

Dev Test
Language || ST-Base | Fact. | MS2S | NDST || MS2S | NDST | Best
Russian 90.38 84.22 | 91.57 | 93.33 || 89.73 | 90.62 | 91.46
Georgian 89.83 92.37 | 98.41 | 97.01 || 97.55 | 96.54 | 98.5
Finnish 68.27 75.78 | 95.8 94.36 | 93.81 | 92.58 | 96.8
Arabic 70.29 24.04 | 96.28 | 92.95 || 93.34 | 89.96 | 95.47
Navajo 71.9 83.47 | 98.82 | 98.48 || 80.13 | 88.43 | 91.48
Spanish 96.92 91.79 | 98.99 | 99.31 || 98.41 | 98.33 | 98.84
Turkish 59.17 64.68 | 98.18 | 97.8 97.74 | 96.17 | 98.93
German 89.29 90.35 | 96.36 | 95.99 || 95.11 | 94.87 | 95.8
Hungarian || 78.62 65.75 | 99.23 | 98.76 || 98.33 | 97.59 | 99.3
Maltese 36.94 N/A | 87.92 | 85.2 82.4 84.78 | 88.99

Table 2: Results for morphological re-inflection with source attributes (second sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schiitze,
2016)

Dev Test
Language || ST-Base | MS2S | NDST || MS2S | NDST | Best
Russian 85.63 85.06 | 86.62 || 83.36 | 85.81 | 90.11

Georgian 91.5 94.13 | 93.81 92.65 | 92.27 | 98.5

Finnish 64.56 77.13 | 84.31 || 74.44 | 8091 | 96.81
Arabic 58.75 75.25 | 78.37 || 70.26 | 73.95 | 91.09
Navajo 60.85 63.85 | 75.04 || 56.5 67.88 | 97.81

Spanish 95.63 93.25 | 95.37 || 92.21 | 94.26 | 98.45
Turkish 54.88 82.56 | 87.25 || 81.69 | 83.88 | 98.38
German 87.69 93.13 | 94.12 || 91.67 | 92.66 | 96.22
Hungarian || 78.33 94.37 | 94.87 | 92.33 | 91.16 | 99.42
Maltese 26.2 4329 | 49.7 4192 | 50.13 | 86.88

Table 3: Results for morphological re-inflection without source attributes (third sub-task) measuring
accuracy over the development set: our models vs. the shared task (ST-Base) baseline, and mean
reciprocal rank (MRR) over the test set: our models vs. the best performing model (Kann and Schiitze,
2016)

Dev Test
Language || ST-Base | MS2S | NDST || MS2S | Best
Russian 81.31 84.56 | 84.25 || 82.81 | 87.13
Georgian 90.68 93.62 | 91.05 92.08 | 96.21
Finnish 61.94 76.5 66.25 || 72.99 | 93.18
Arabic 50 72.56 | 69.31 69.05 | 82.8
Navajo 60.26 62.7 54.0 52.85 | 83.5
Spanish 88.94 92.62 | 89.68 || 92.14 | 96.69
Turkish 52.19 79.87 | 75.25 || 79.69 | 95.0
German 81.56 90.93 | 89.31 89.58 | 92.41
Hungarian || 78 94.25 | 83.83 || 91.91 | 98.37
Maltese 24.75 44.04 | 3.58 40.79 | 84.25
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For the third task we also measured perfor-
mance with respect to ST-Base as can be seen in
Table 3. On the development set, the MS2S model
outperformed the others on all languages. Since
this was the situation we did not submit the NDST
model for this sub-task, thus not showing test re-
sults for the NDST model on the test set.

6 Preliminary Analysis

An obvious trend we can see in the results is
the MS2S approach giving higher accuracy scores
on the first and third tasks, while the NDST ap-
proach being significantly better on the second
task. While inspecting the data for the second
and third tasks we noticed that the datasets only
differ in the added morpho-syntactic attributes for
the input sequences, and are identical other then
that. This is encouraging as it shows how the
NDST control mechanism can facilitate the addi-
tional data on the input sequence to predict inflec-
tions in a better way. We plan to further analyze
the results to better understand the cases where the
NDST architecture provides added value over the
MS2S approach.

7 Discussion and Future Work

Our systems reached the second/third place in the
Restricted category in the shared task, depend-
ing on the language/sub-task combination. It is
also encouraging to see that if we submitted our
systems as-is to the Standard and Bonus tracks
we would also get similar rankings, even without
using the additional training data available there.
The winning submission in all tracks, described in
(Kann and Schiitze, 2016) also used an encoder-
decoder approach that incorporated the morpho-
syntactic attributes as inputs to the network, but
with several differences from our approach like us-
ing an attention mechanism similar to (Bahdanau
et al., 2014), training a single model for all inflec-
tion types rather than one per POS type and per-
forming prediction by using an ensemble of five
models with majority voting rather than using a
single trained model like we did. Future work may
include exploring a hybrid approach that com-
bines the ideas proposed in our work and the lat-
ter. Other recent works that propose ideas relevant
to explore in future work in this direction are (Gu
et al., 2016), which describe a different copying
mechanism for encoder-decoder architectures, or
(Rastogi et al., 2016), which models the reinflec-
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tion task using a finite state transducer weighted
with neural context that also takes special care of
the character copying issue.
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Abstract

We present a simple method to incorporate
syntactic information about the target lan-
guage in a neural machine translation sys-
tem by translating into linearized, lexical-
ized constituency trees. Experiments on
the WMT16 German-English news trans-
lation task shown improved BLEU scores
when compared to a syntax-agnostic NMT
baseline trained on the same dataset.
An analysis of the translations from the
syntax-aware system shows that it per-
forms more reordering during translation
in comparison to the baseline. A small-
scale human evaluation also showed an ad-
vantage to the syntax-aware system.

1 Introduction and Model

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2014) has recently became the
state-of-the-art approach to machine translation
(Bojaretal., 2016), while being much simpler than
the previously dominant phrase-based statistical
machine translation (SMT) approaches (Koehn,
2010). NMT models usually do not make ex-
plicit use of syntactic information about the lan-
guages at hand. However, a large body of work
was dedicated to syntax-based SMT (Williams
et al., 2016). One prominent approach to syntax-
based SMT is string-to-tree (S2T) translation (Ya-
mada and Knight, 2001, 2002), in which a source-
language string is translated into a target-language
tree. S2T approaches to SMT help to ensure the
resulting translations have valid syntactic struc-
ture, while also mediating flexible reordering be-
tween the source and target languages. The main
formalism driving current S2T SMT systems is
GHKM rules (Galley et al., 2004, 2006), which are
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synchronous transduction grammar (STSG) frag-
ments, extracted from word-aligned sentence pairs
with syntactic trees on one side. The GHKM
translation rules allow flexible reordering on all
levels of the parse-tree.

We suggest that NMT can also benefit from the
incorporation of syntactic knowledge, and propose
a simple method of performing string-to-tree neu-
ral machine translation. Our method is inspired
by recent works in syntactic parsing, which model
trees as sequences (Vinyals et al., 2015; Choe and
Charniak, 2016). Namely, we translate a source
sentence into a linearized, lexicalized constituency
tree, as demonstrated in Figure 2. Figure 1 shows
a translation from our neural S2T model compared
to one from a vanilla NMT model for the same
source sentence, as well as the attention-induced
word alignments of the two models.

A o e
N N

NP NP

AN/

no one lived in the house for several years .
/

=

—
tber mehrere Jahre hatte niemand in dem Haus gelebt .

///

over several years , no one had lived in the house .

Figure 1: Top - a lexicalized tree translation pre-
dicted by the bpe2tree model. Bottom - a trans-
lation for the same sentence from the bpe2bpe
model. The blue lines are drawn according to the
attention weights predicted by each model.

Note that the linearized trees we predict are dif-
ferent in their structure from those in Vinyals et al.
(2015) as instead of having part of speech tags as
terminals, they contain the words of the translated
sentence. We intentionally omit the POS informa-

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 132-140
Vancouver, Canada, July 30 - August 4, 2017. (©2017 Association for Computational Linguistics
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Jane hatte eine Katze . — (roor (s (wp Jane )yp (v p had (yp acat)yp )yvp . )s JrRoor

Figure 2: An example of a translation from a string to a linearized, lexicalized constituency tree.

tion as including it would result in significantly
longer sequences. The S2T model is trained on
parallel corpora in which the target sentences are
automatically parsed. Since this modeling keeps
the form of a sequence-to-sequence learning task,
we can employ the conventional attention-based
sequence to sequence paradigm (Bahdanau et al.,
2014) as-is, while enriching the output with syn-
tactic information.

Related Work Some recent works did propose
to incorporate syntactic or other linguistic knowl-
edge into NMT systems, although mainly on the
source side: Eriguchi et al. (2016a,b) replace
the encoder in an attention-based model with a
Tree-LSTM (Tai et al., 2015) over a constituency
parse tree; Bastings et al. (2017) encoded sen-
tences using graph-convolutional networks over
dependency trees; Sennrich and Haddow (2016)
proposed a factored NMT approach, where each
source word embedding is concatenated to em-
beddings of linguistic features of the word; Lu-
ong et al. (2015) incorporated syntactic knowl-
edge via multi-task sequence to sequence learning:
their system included a single encoder with multi-
ple decoders, one of which attempts to predict the
parse-tree of the source sentence; Stahlberg et al.
(2016) proposed a hybrid approach in which trans-
lations are scored by combining scores from an
NMT system with scores from a Hiero (Chiang,
2005, 2007) system. Shi et al. (2016) explored the
syntactic knowledge encoded by an NMT encoder,
showing the encoded vector can be used to pre-
dict syntactic information like constituency trees,
voice and tense with high accuracy.

In parallel and highly related to our work,
Eriguchi et al. (2017) proposed to model the target
syntax in NMT in the form of dependency trees by
using an RNNG-based decoder (Dyer et al., 2016),
while Nadejde et al. (2017) incorporated target
syntax by predicting CCG tags serialized into the
target translation. Our work differs from those by
modeling syntax using constituency trees, as was
previously common in the “traditional” syntax-
based machine translation literature.

2 Experiments & Results

Experimental Setup We first experiment in a
resource-rich setting by using the German-English
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portion of the WMT16 news translation task (Bo-
jar et al., 2016), with 4.5 million sentence pairs.
We then experiment in a low-resource scenario us-
ing the German, Russian and Czech to English
training data from the News Commentary v8 cor-
pus, following Eriguchi et al. (2017). In all cases
we parse the English sentences into constituency
trees using the BLLIP parser (Charniak and John-
son, 2005).! To enable an open vocabulary trans-
lation we used sub-word units obtained via BPE
(Sennrich et al., 2016b) on both source and target.2

In each experiment we train two models.
A baseline model (bpe2bpe), trained to trans-
late from the source language sentences to En-
glish sentences without any syntactic annotation,
and a string-to-linearized-tree model (bpe2tree),
trained to translate into English linearized con-
stituency trees as shown in Figure 2. Words
are segmented into sub-word units using the BPE
model we learn on the raw parallel data. We use
the NEMATUS (Sennrich et al., 2017) implemen-
tation of an attention-based NMT model.* We
trained the models until there was no improvement
on the development set in 10 consecutive check-
points. Note that the only difference between the
baseline and the bpe2tree model is the syntactic in-
formation, as they have a nearly-identical amount
of model parameters (the only additional param-
eters to the syntax-aware system are the embed-
dings for the brackets of the trees).

For all models we report results of the best
performing single model on the dev-set (new-
stest2013+newstest2014 in the resource rich set-
ting, newstest2015 in the rest, as measured by
BLEU) when translating newstest2015 and new-
stest2016, similarly to Sennrich et al. (2016a);
Eriguchi et al. (2017). To evaluate the string-to-
tree translations we derive the surface form by re-
moving the symbols that stand for non-terminals
in the tree, followed by merging the sub-words.
We also report the results of an ensemble of
the last 5 checkpoints saved during each model
training. We compute BLEU scores using the

"https://github.com/BLLIP/bllip-parser

2https ://github.com/rsennrich/
subword-nmt

Shttps://github.com/rsennrich/nematus

“Further technical details of the setup and training are
available in the supplementary material.



mteval-vl3a.pl script from the Moses toolkit
(Koehn et al., 2007).

system newstest2015 | newstest2016
bpe2bpe 27.33 31.19
bpe2tree 27.36 32.13
bpe2bpe ens. | 28.62 32.38
bpe2tree ens. | 28.7 33.24

Table 1: BLEU results for the WMT16 experiment

Results As shown in Table 1, for the resource-rich
setting, the single models (bpe2bpe, bpe2tree) per-
form similarly in terms of BLEU on newstest2015.
On newstest2016 we witness an advantage to the
bpe2tree model. A similar trend is found when
evaluating the model ensembles: while they im-
prove results for both models, we again see an ad-
vantage to the bpe2tree model on newstest2016.
Table 2 shows the results in the low-resource set-
ting, where the bpe2tree model is consistently bet-
ter than the bpe2bpe baseline. We find this in-
teresting as the syntax-aware system performs a
much harder task (predicting trees on top of the
translations, thus handling much longer output se-
quences) while having a nearly-identical amount
of model parameters. In order to better understand
where or how the syntactic information improves
translation quality, we perform a closer analysis of
the WMT16 experiment.

3 Analysis

The Resulting Trees Our model produced valid
trees for 5970 out of 6003 sentences in the devel-
opment set. While we did not perform an in-depth
error-analysis, the trees seem to follow the syntax
of English, and most choices seem reasonable.

Quantifying Reordering English and German
differ in word order, requiring a significant amount
of reordering to generate a fluent translation. A
major benefit of S2T models in SMT is facilitat-
ing reordering. Does this also hold for our neural
S2T model? We compare the amount of reorder-
ing in the bpe2bpe and bpe2tree models using a
distortion score based on the alignments derived
from the attention weights of the corresponding
systems. We first convert the attention weights to
hard alignments by taking for each target word the
source word with highest attention weight. For an
n-word target sentence ¢ and source sentence s let
a(7) be the position of the source word aligned to
the target word in position 7. We define:
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system newstest2015 | newstest2016
bpe2bpe 13.81 14.16
%. bpe2tree 14.55 16.13
g bpe2bpe ens. | 14.42 15.07
bpe2tree ens. | 15.69 17.21
- bpe2bpe 12.58 11.37
M | bpe2tree 12.92 11.94
a bpe2bpe ens. | 13.36 11.91
bpe2tree ens. | 13.66 12.89
bpe2bpe 10.85 11.23
& | bpe2iree 11.54 11.65
&) | bpe2bpe ens. | 11.46 11.77
bpe2tree ens. | 12.43 12.68

Table 2: BLEU results for the low-resource exper-
iments (News Commentary v8)

d(s,0) = > la(i) —ali — 1)
=2

For example, for the translations in Figure 1, the
above score for the bpe2tree model is 2.73, while
the score for the bpe2bpe model is 1.27 as the
bpe2tree model did more reordering. Note that
for the bpe2tree model we compute the score only
on tokens which correspond to terminals (words
or sub-words) in the tree. We compute this score
for each source-target pair on newstest2015 for
each model. Figure 3 shows a histogram of the
binned score counts. The bpe2tree model has
more translations with distortion scores in bins 1-
onward and significantly less translations in the
least-reordering bin (0) when compared to the
bpe2bpe model, indicating that the syntactic in-
formation encouraged the model to perform more
reordering.> Figure 4 tracks the distortion scores
throughout the learning process, plotting the av-
erage dev-set scores for the model checkpoints
saved every 30k updates. Interestingly, both mod-
els obey to the following trend: open with a rel-
atively high distortion score, followed by a steep
decrease, and from there ascend gradually. The
bpe2tree model usually has a higher distortion
score during training, as we would expect after our
previous findings from Figure 3.

Tying Reordering and Syntax The bpe2tree
model generates translations with their con-
stituency tree and their attention-derived align-
ments. We can use this information to extract
GHKM rules (Galley et al., 2004). We derive

>We also note that in bins 4-6 the bpe2bpe model had
slightly more translations, but this was not consistent among
different runs, unlike the gaps in bins 0-3 which were consis-
tent and contain most of the translations.

6github .com/joshua-decoder/galley—ghkm
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VP(x0:TER x1:NP x2:PP) (52)x0x1x2 (38 x1x2x0 (20)x1x2x0”,/” (11)x0x1x27,/” (9)x2x1x0
VP(x0:TER x1:NP PP(x2:TER x3:NP)) (40) x0x1 x2x3 (32)x1x2x3x0 (18)x1x2x3x0”,/” (8)x0x1x2x37,/” (5)x2x3x1x0
VP(x0:TER NP(x1:NP x2:PP)) 6 x0xIx2 (B8 x1x2x0 (19)x0x1x27,/” (8)x0 7eine” x1 x2 (8) x1 x2 x0 /.

NP(x0:NP PP(x1:TER x2:NP))
S(VP(x0:TER x1:NP))
VP(x0:TER x1:VP)

(728)x0 x1 x2  (110) "die” x0x1 x2 (10
@HxIx0 (26)x0x1  (14) x1x0 7,/
(73)x0x1  (38)x1x0 (25)x0x1 /"

7) X0 x1 X2 7,/7  (56) x0 x1 "der” x2  (54) "der” x0 x1 x2
(7) 7die” x1x0  (5)x0x1 7",/
(15) XL x07”/”  (9)7/7 x0x1

Table 3: Top dev-set GHKM Rules with reordering. Numb

ers: rule counts. Bolded: reordering rules.

src Dutzende tiirkischer Polizisten wegen ~Verschworung” gegen die Regierung festgenommen

ref Tens of Turkish Policemen Arrested over ’Plotting’ against Gov’t

2tree  dozens of Turkish police arrested for “conspiracy” against the government.

2bpe  dozens of turkish policemen on “conspiracy” against the government arrested

src Die Menschen in London weinten, als ich unsere Geschichte erzhlte. | Er ging einen Monat nicht zu Arbeit.

ref People in London were crying when I told our story. He ended up spending a month off work.
2tree  the people of london wept as I told our story. he did not go to work a month.

2bpe  the people of London, when I told our story. he went one month to work.

src Achenbach habe fiir 121 Millionen Euro Wertgegenstinde fiir Albrecht angekauft.

ref Achenbach purchased valuables for Albrecht for 121 million euros.

2tree  Achenbach has bought valuables for Albrecht for 121 million euros.

2bpe  Achenbach have purchased value of 121 million Euros for Albrecht.

src Apollo investierte 2008 1 Milliarde $ in Norwegian Cruise. Konntest du mal mit dem “ich liebe dich” authéren?
ref Apollo made a $1 billion investment in Norwegian Cruise in 2008. Could you stop with the I love you”?
2tree  Apollo invested EUR $1 billion in Norwegian Cruise in 2008. Could you stop saying "I love you?

2bpe  Apollo invested 2008 $1 billion in Norwegian Cruise. Can you say with the I love you” stop?
src Gerade in dieser schweren Phase hat er gezeigt, dass er fiir uns ein sehr wichtiger Spieler ist”, konstatierte Barisic.
ref Especially during these difficult times, he showed that he is a very important player for us”, Barisic stated.

2tree  Especially at this difficult time he has shown that he is a very important player for us,” said Barisic.

2bpe Itis precisely during this difficult period that he has shown us to be a very important player, ”Barisic said,

src Hopfen und Malz - auch in China eine beliebte Kombination. “Ich weil} jetzt, dass ich das kann - prima!”
ref Hops and malt - a popular combination even in China. ”I now know that I can do it - brilliant!”
2tree  Hops and malt - a popular combination in China. ”I now know that I can do that!

2bpe  Hops and malt - even in China, a popular combination. I know now that I can that - prima!”

src Die Ukraine hatte gewarnt, Russland konnte auch die Gasversorgung fiir Europa unterbrechen.

ref Ukraine warned that Russia could also suspend the gas supply to Europe.

2tree  Ukraine had warned that Russia could also stop the supply of gas to Europe.

2bpe  Ukraine had been warned, and Russia could also cut gas supplies to Europe.

src Bis dahin gab es in Kollbach im Schulverband Petershausen-Kollbach drei Klassen und in Petershausen fiinf.

ref Until then, the school district association of Petershausen-Kollbach had three classes in Kollbach and five in Petershausen.
2tree  until then, in Kollbach there were three classes and five classes in Petershausen.

2bpe  until then there were three classes and in Petershausen five at the school board in Petershausen-Kollbach.

Table 4: Translation examples from newstest2015. The underlines correspond to the source word at-

tended by the first opening bracket (these are consistently

the main verbs or structural markers) and

the target words this source word was most strongly aligned to. See the supplementary material for an
attention weight matrix example when predicting a tree (Figure 6) and additional output examples.
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hard alignments for that purpose by treating ev-
ery source/target token-pair with attention score
above 0.5 as an alignment. Extracting rules from
the dev-set predictions resulted in 233,657 rules,
where 22,914 of them (9.8%) included reorder-
ing, i.e. contained variables ordered differently in
the source and the target. We grouped the rules
by their LHS (corresponding to a target syntac-
tic structure), and sorted them by the total num-
ber of RHS (corresponding to a source sequential
structure) with reordering. Table 3 shows the top
10 extracted LHS, together with the top-5 RHS,
for each rule. The most common rule, VP(z(:TER
T1:NP) — x1 xg, found in 184 sentences in the
dev set (8.4%), is indicating that the sequence x;
xg in German was reordered to form a verb phrase
in English, in which zg is a terminal and z; is a
noun phrase. The extracted GHKM rules reveal
very sensible German-English reordering patterns.

Relative Constructions Browsing the produced
trees hints at a tendency of the syntax-aware model
to favor using relative-clause structures and sub-
ordination over other syntactic constructions (i.e.,
“several cameras that are all priced...” vs. “sev-
eral cameras, all priced...”). To quantify this, we
count the English relative pronouns (who, which,
that’, whom, whose) found in the newstest2015
translations of each model and in the reference
translations, as shown in Figure 5. The bpe2tree
model produces more relative constructions com-
pared to the bpe2bpe model, and both models pro-
duce more such constructions than found in the
reference.

Main Verbs While not discussed until this
point, the generated opening and closing brack-
ets also have attention weights, providing another
opportunity to to peak into the model’s behavior.
Figure 6 in the supplementary material presents an
example of a complete attention matrix, including
the syntactic brackets. While making full sense of
the attention patterns of the syntactic elements re-
mains a challenge, one clear trend is that opening
the very first bracket of the sentence consistently
attends to the main verb or to structural mark-
ers (i.e. question marks, hyphens) in the source
sentence, suggesting a planning-ahead behavior of
the decoder. The underlines in Table 4 correspond
to the source word attended by the first opening
bracket, and the target word this source word was

"that” also functions as a determiner. We do not distin-

guish the two cases.
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most strongly aligned to. In general, we find the
alignments from the syntax-based system more
sensible (i.e. in Figure 1 — the bpe2bpe alignments
are off-by-1).

Qualitative Analysis and Human Evaluations
The bpe2tree translations read better than their
bpe2bpe counterparts, both syntactically and se-
mantically, and we highlight some examples
which demonstrate this. Table 4 lists some rep-
resentative examples, highlighting improvements
that correspond to syntactic phenomena involving
reordering or global structure. We also performed
a small-scale human-evaluation using mechanical
turk on the first 500 sentences in the dev-set. Fur-
ther details are available in the supplementary ma-
terial. The results are summarized in the following
table:

2bpe weakly better 100
2bpe strongly better 54
2tree weakly better 122
2tree strongly better 64
both good 26
both bad 3

disagree 131

As can be seen, in 186 cases (37.2%) the human
evaluators preferred the bpe2tree translations, vs.
154 cases (30.8%) for bpe2bpe, with the rest of the
cases (30%) being neutral.

4 Conclusions and Future Work

We present a simple string-to-tree neural transla-
tion model, and show it produces results which
are better than those of a neural string-to-string
model. While this work shows syntactic infor-
mation about the target side can be beneficial for
NMT, this paper only scratches the surface with
what can be done on the subject. First, better mod-
els can be proposed to alleviate the long sequence
problem in the linearized approach or allow a more
natural tree decoding scheme (Alvarez-Melis and
Jaakkola, 2017). Comparing our approach to other
syntax aware NMT models like Eriguchi et al.
(2017) and Nadejde et al. (2017) may also be of in-
terest. A Contrastive evaluation (Sennrich, 2016)
of a syntax-aware system vs. a syntax-agnostic
system may also shed light on the benefits of in-
corporating syntax into NMT.
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A Supplementary Material

Data The English side of the corpus was tok-
enized (into Penn treebank format) and truecased
using the scripts provided in Moses (Koehn et al.,
2007). We ran the BPE process on a concatenation
of the source and target corpus, with 89500 BPE
operations in the WMT experiment and with 45k
operations in the other experiments. This resulted
in an input vocabulary of 84924 tokens and an out-
put vocabulary of 78499 tokens in the WMT16
experiment. The linearized constituency trees are
obtained by simply replacing the POS tags in the
parse trees with the corresponding word or sub-
words. The output vocabulary in the bpe2tree
models includes the target subwords and the tree
symbols which correspond to an opening or clos-
ing of a specific phrase type.

Hyperparameters The word embedding size
was set to 500/256 and the encoder and decoder
sizes were set to 1024/256 (WMT16/other ex-
periments). For optimization we used Adadelta
(Zeiler, 2012) with minibatch size of 40. For de-
coding we used beam search with a beam size
of 12. We trained the bpe2tree WMT16 model
on sequences with a maximum length of 150 to-
kens (the average length for a linearized tree in the
training set was about 50 tokens). It was trained
for two weeks on a single Nvidia TitanX GPU.
The bpe2bpe WMT16 model was trained on se-
quences with a maximum length of 50 tokens, and
with minibatch size of 80. It was trained for one
week on a single Nvidia TitanX GPU. Only in the
low-resource experiments we applied dropout as
described in Sennrich et al. (2016a) for Romanian-
English.

Human Evaluation We performed human-
evaluation on the Mechnical Turk platform. Each
sentence was evaluated using two annotators. For
each sentence, we presented the annotators with
the English reference sentence, followed by the
outputs of the two systems. The German source
was not shown, and the two system’s outputs were
shown in random order. The annotators were in-
structed to answer “Which of the two sentences, in
your view, is a better portrayal of the the reference
sentence.” They were then given 6 options: “sent
1 is better”, “sent 2 is better”, “sent 1 is a little bet-
ter”, “sent 2 is a little better”, “both sentences are
equally good”, “both sentences are equally bad”.
We then ignore differences between “better” and
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“a little better”. We count as “strongly better” the
cases where both annotators indicated the same
sentence as better, as “weakly better” the cases
were one annotator chose a sentence and the other
indicated they are both good/bad. Other cases are
treated as either “both good” / “both bad” or as
disagreements.
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tree translation in Figure 1

Additional Output Examples from both mod-
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translation and alignment quality in the tree-based
translations, as well as the overall high structural
quality of the resulting trees. The few syntactic
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Abstract

Splitting and rephrasing a complex sen-
tence into several shorter sentences that
convey the same meaning is a chal-
lenging problem in NLP. We show that
while vanilla seq2seq models can reach
high scores on the proposed benchmark
(Narayan et al., 2017), they suffer from
memorization of the training set which
contains more than 89% of the unique
simple sentences from the validation and
test sets. To aid this, we present a
new train-development-test data split and
neural models augmented with a copy-
mechanism, outperforming the best re-
ported baseline by 8.68 BLEU and foster-
ing further progress on the task.

1 Introduction

Processing long, complex sentences is challeng-
ing. This is true either for humans in various
circumstances (Inui et al., 2003; Watanabe et al.,
2009; De Belder and Moens, 2010) or in NLP
tasks like parsing (Tomita, 1986; McDonald and
Nivre, 2011; Jelinek, 2014) and machine trans-
lation (Chandrasekar et al., 1996; Pouget-Abadie
et al., 2014; Koehn and Knowles, 2017). An auto-
matic system capable of breaking a complex sen-
tence into several simple sentences that convey the
same meaning is very appealing.

A recent work by Narayan et al. (2017) in-
troduced a dataset, evaluation method and base-
line systems for the task, naming it “Split-and-
Rephrase”. The dataset includes 1,066,115 in-
stances mapping a single complex sentence to a
sequence of sentences that express the same mean-
ing, together with RDF triples that describe their
semantics. They considered two system setups: a
text-to-text setup that does not use the accompany-
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ing RDF information, and a semantics-augmented
setup that does. They report a BLEU score of 48.9
for their best text-to-text system, and of 78.7 for
the best RDF-aware one. We focus on the text-to-
text setup, which we find to be more challenging
and more natural.

We begin with vanilla SEQ2SEQ models with
attention (Bahdanau et al., 2015) and reach an ac-
curacy of 77.5 BLEU, substantially outperforming
the text-to-text baseline of Narayan et al. (2017)
and approaching their best RDF-aware method.
However, manual inspection reveal many cases
of unwanted behaviors in the resulting outputs:
(1) many resulting sentences are unsupported by
the input: they contain correct facts about rele-
vant entities, but these facts were not mentioned
in the input sentence; (2) some facts are re-
peated—the same fact is mentioned in multiple
output sentences; and (3) some facts are missing—
mentioned in the input but omitted in the output.

The model learned to memorize entity-fact pairs
instead of learning to split and rephrase. Indeed,
feeding the model with examples containing enti-
ties alone without any facts about them causes it
to output perfectly phrased but unsupported facts
(Table 3). Digging further, we find that 99%
of the simple sentences (more than 89% of the
unique ones) in the validation and test sets also
appear in the training set, which—coupled with
the good memorization capabilities of SEQ2SEQ
models and the relatively small number of dis-
tinct simple sentences—helps to explain the high
BLEU score.

To aid further research on the task, we pro-
pose a more challenging split of the data. We
also establish a stronger baseline by extending
the SEQ2SEQ approach with a copy mechanism,
which was shown to be helpful in similar tasks (Gu
et al., 2016; Merity et al., 2017; See et al., 2017).
On the original split, our models outperform the
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count unique
RDF entities 32,186 925
RDF relations 16,093 172
complex sentences 1,066,115 | 5,544
simple sentences 5,320,716 | 9,552
train complex sentences | 886,857 4,438
train simple sentences 4,451,959 | 8,840
dev complex sentences 97,950 554
dev simple sentences 475,337 3,765
test complex sentences 81,308 554
test simple sentences 393,420 4,015
% dev simple in train 99.69% 90.9%
% test simple in train 99.09% 89.8%
% dev vocab in train 97.24%
% test vocab in train 96.35%

Table 1: Statistics for the WEBSPLIT dataset.

best baseline of Narayan et al. (2017) by up to 8.68
BLEU, without using the RDF triples. On the new
split, the vanilla SEQ2SEQ models break com-
pletely, while the copy-augmented models per-
form better. In parallel to our work, an updated
version of the dataset was released (v1.0), which is
larger and features a train/test split protocol which
is similar to our proposal. We report results on this
dataset as well. The code and data to reproduce
our results are available on Github.! We encour-
age future work on the split-and-rephrase task to
use our new data split or the v1.0 split instead of
the original one.

2 Preliminary Experiments

Task Definition In the split-and-rephrase task
we are given a complex sentence C', and need to
produce a sequence of simple sentences 11, ..., T},
n > 2, such that the output sentences convey all
and only the information in C'. As additional su-
pervision, the split-and-rephrase dataset associates
each sentence with a set of RDF triples that de-
scribe the information in the sentence. Note that
the number of simple sentences to generate is not
given as part of the input.

Experimental Details We focus on the task of
splitting a complex sentence into several simple
ones without access to the corresponding RDF
triples in either train or test time. For evaluation
we follow Narayan et al. (2017) and compute the
averaged individual multi-reference BLEU score
for each prediction.> We split each prediction to

"https://github.com/biu-nlp/
sprp—acl2018

INote that this differs from “normal” multi-reference
BLEU (as implemented in multi-bleu.pl) since the
number of references differs among the instances in the test-
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Model BLEU #S/C  #T/S
SOURCE 55.67 1.0 21.11
REFERENCE - 252 1093
Narayan et al. (2017)

HYBRIDSIMPL 39.97 1.26 17.55
SEQ2SEQ 4892 251 10.32
MULTISEQ2SEQ* 42,18 2.53 10.69
SPLIT-MULTISEQ2SEQ* 7727 284 11.63

SPLIT-SEQ2SEQ* 78.77 2.84 9.28

This work

SEQ2SEQ128 76.56 253 10.53
SEQ2SEQ256 77.48 2.57 10.56
SEQ2SEQ512 7592 259 10.59

Table 2: BLEU scores, simple sentences per
complex sentence (#S/C) and tokens per simple
sentence (#1/S), as computed over the test set.
SOURCE are the complex sentences and REFER-
ENCE are the reference rephrasings from the test
set. Models marked with * use the semantic RDF
triples.

sentences’ and report the average number of sim-
ple sentences in each prediction, and the average
number of tokens for each simple sentence. We
train vanilla sequence-to-sequence models with at-
tention (Bahdanau et al., 2015) as implemented
in the OPENNMT-PY toolkit (Klein et al., 2017).*
Our models only differ in the LSTM cell size (128,
256 and 512, respectively). See the supplemen-
tary material for training details and hyperparame-
ters. We compare our models to the baselines pro-
posed in Narayan et al. (2017). HYBRIDSIMPL
and SEQ2SEQ are text-to-text models, while the
other reported baselines additionally use the RDF
information.

Results As shown in Table 2, our 3 models ob-
tain higher BLEU scores then the SEQ2SEQ base-
line, with up to 28.35 BLEU improvement, de-
spite being single-layer models vs. the 3-layer
models used in Narayan et al. (2017). A possible
explanation for this discrepancy is the SEQ2SEQ
baseline using a dropout rate of 0.8, while we
use 0.3 and only apply it on the LSTM out-
puts. Our results are also better than the MUL-
TISEQ2SEQ and SPLIT-MULTISEQ2SEQ mod-
els, which use explicit RDF information. We
also present the macro-average® number of sim-

set.

3Using NLTK v3.2.5 https://www.nltk.org/

*https://github.com/OpenNMT/OpenNMT-py
commit d4ab35a

SSince the number of references varies greatly from one
complex sentence to another, (min: 1, max: 76,283, median:
16) we avoid bias towards the complex sentences with many
references by performing macro average, i.e. we first average
the number of simple sentences in each reference among the



Input Prediction

A Fortress of Grey Ice with ISBM 0-7653-
0633-6 has 672 pages .

J.V. Jones authored A Fortress of Grey Ice .
A Fortress of Grey Ice has 672 pages .

The address , 11 Diagonal Street is located
in South Africa where the leader is Cyril
Ramaphosa and some Asian South Africans

The address , 11 Diagonal Street is located in South Africa .
The leader of South Africa is called Cyril Ramaphosa .
The leader of South Africa is called Cyril Ramaphosa .

live . The leader of South Africa is called Cyril Ramaphosa .

Alan Shepard Alan Shepard Alan Shepard

Alan Shepard is dead .
Alan Shepard was a test pilot .

AFC Ajax AFC Ajax AFC Ajax

AFC Ajax ’s manager is Jong Ajax .
AFC Ajax N.V. own Sportpark De Toekomst .

Table 3: Predictions from a vanilla SEQ2SEQ model, illustrating unsupported facts, missing facts and
repeated facts. The last two rows show inputs we composed to demonstrate that the models memorize

entity-fact pairs.

ple sentences per complex sentence in the ref-
erence rephrasings (REFERENCE) showing that
the SPLIT-MULTISEQ2SEQ and SPLIT-SEQ2SEQ
baselines may suffer from over-splitting since the
reference splits include 2.52 simple sentences on
average, while the mentioned models produced
2.84 sentences.
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Figure 1: SEQZSEQ512’S attention weights. Hor-
izontal: input. Vertical: predictions.

Analysis We begin analyzing the results by
manually inspecting the model’s predictions on
the validation set. This reveals three common
kinds of mistakes as demonstrated in Table 3: un-
supported facts, repetitions, and missing facts. All
the unsupported facts seem to be related to enti-
ties mentioned in the source sentence. Inspecting
the attention weights (Figure 1) reveals a worry-
ing trend: throughout the prediction, the model
focuses heavily on the first word in of the first en-
tity (“A wizard of Mars”) while paying little atten-
tion to other cues like “hardcover”, “Diane” and

references of a specific complex sentence, and then average
these numbers.
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“the ISBN number”. This explains the abundance
of “hallucinated” unsupported facts: rather than
learning to split and rephrase, the model learned
to identify entities, and spit out a list of facts it had
memorized about them. To validate this assump-
tion, we count the number of predicted sentences
which appeared as-is in the training data. We find
that 1645 out of the 1693 (97.16%) predicted sen-
tences appear verbatim in the training set. Table
1 gives more detailed statistics on the WEBSPLIT
dataset.

To further illustrate the model’s recognize-and-
spit strategy, we compose inputs containing an
entity string which is duplicated three times, as
shown in the bottom two rows of Table 3. As
expected, the model predicted perfectly phrased
and correct facts about the given entities, although
these facts are clearly not supported by the input.

3 New Data-split

The original data-split is not suitable for measur-
ing generalization, as it is susceptible to “cheat-
ing” by fact memorization. = We construct a
new train-development-test split to better reflect
our expected behavior from a split-and-rephrase
model. We split the data into train, development
and test sets by randomly dividing the 5,554 dis-
tinct complex sentences across the sets, while us-
ing the provided RDF information to ensure that:

1. Every possible RDF relation (e.g., BORNIN,
LOCATEDIN) is represented in the training
set (and may appear also in the other sets).

2. Every RDF triplet (a complete fact) is repre-
sented only in one of the splits.

While the set of complex sentences is still di-
vided roughly to 80%/10%/10% as in the original
split, now there are nearly no simple sentences in



count unique
train complex sentences | 1,039,392 | 4,506
train simple sentences 5,239,279 | 7,865
dev complex sentences 13,294 535
dev simple sentences 39,703 812
test complex sentences 13,429 503
test simple sentences 41,734 879
# dev simple in train 35 (0.09%)
# test simple in train 1 (0%)
% dev vocab in train 62.99%
% test vocab in train 61.67%
dev entities in train 26/111 (23.42%)
test entities in train 25/120 (20.83%)
dev relations in train 34/34 (100%)
test relations in train 37/37 (100%)

Table 4: Statistics for the RDF-based data split

the development and test sets that appear verba-
tim in the train-set. Yet, every relation appear-
ing in the development and test sets is supported
by examples in the train set. We believe this split
strikes a good balance between challenge and fea-
sibility: to succeed, a model needs to learn to iden-
tify relations in the complex sentence, link them to
their arguments, and produce a rephrasing of them.
However, it is not required to generalize to unseen
relations. ¢

The data split and scripts for creating it are
available on Github.” Statistics describing the data
split are detailed in Table 4.

4 Copy-augmented Model

To better suit the split-and-rephrase task, we aug-
ment the SEQ2SEQ models with a copy mecha-
nism. Such mechanisms have proven to be benefi-
cial in similar tasks like abstractive summarization
(Gu et al., 2016; See et al., 2017) and language
modeling (Merity et al., 2017). We hypothesize
that biasing the model towards copying will im-
prove performance, as many of the words in the
simple sentences (mostly corresponding to enti-
ties) appear in the complex sentence, as evident by
the relatively high BLEU scores for the SOURCE
baseline in Table 2.

Copying is modeled using a “copy switch”
probability p(z) computed by a sigmoid over a
learned composition of the decoder state, the con-
text vector and the last output embedding. It in-
terpolates the pg, fimas distribution over the target
vocabulary and a copy distribution pc,,, over the
source sentence tokens. pcopy is simply the com-
puted attention weights. Once the above distribu-

SThe updated dataset (v1.0, published by Narayan et al.
after this work was accepted) follows (2) above, but not (1).

"nttps://github.com/biu-nlp/
sprp—-acl2018
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BLEU #S/C #T/S

SOURCE 55.67 1.0 2I.11

+=  REFERENCE - 2.52  10.93
S SPLIT-SEQ2SEQ | 78.77 2.84 928
S SEQ2SEQIZ8 7656  2.53 10.53
<  SEQ2SEQ256 7748 257 10.56
T SEQ2SEQ512 75.92 2359  10.59
B T CopYI28 7855 251 10.29
8 CorY256 8373 249 10.66
CopY512 8745 256  10.50
SOURCE 55.66 1.0 2037

=  REFERENCE - 240 10.83
‘& SEQ2SEQI28 555 227 11.68
s SEQ2SEQ256 5.28 227 10.54
S SEQ2SEQ512 6.68 244  10.23
g CopvI28 16.71 20 10.53
S CoPY256 2378 238 10.55
CopY512 2497 2.87 10.04

~  SOURCE 56.1 1.0 204
—  REFERENCE - 2.48 10.69
” TCopY512 2547 229 11.74

Table 5: Results over the test sets of the original,
our proposed split and the v1.0 split

tions are computed, the final probability for an out-
put word w is:

p(w) = p(z = l)pcopy(w) + p(z = 0)psoftmam (w)

In case w is not present in the output vocabulary,
We Set Do ftmaz(w) = 0. We refer the reader to
See et al. (2017) for a detailed discussion regard-
ing the copy mechanism.

5 Experiments and Results

Models with larger capacities may have greater
representation power, but also a stronger tendency
to memorize the training data. We therefore per-
form experiments with copy-enhanced models of
varying LSTM widths (128, 256 and 512). We
train the models using the negative log likelihood
of p(w) as the objective. Other than the copy
mechanism, we keep the settings identical to those
in Section 2. We train models on the original split,
our proposed data split and the v1.0 split.

Results Table 5 presents the results. On the orig-
inal data-split, the COPY512 model outperforms
all baselines, improving over the previous best by
8.68 BLEU points. On the new data-split, as ex-
pected, the performance degrades for all models,
as they are required to generalize to sentences not
seen during training. The copy-augmented mod-
els perform better than the baselines in this case as
well, with a larger relative gap which can be ex-
plained by the lower lexical overlap between the
train and the test sets in the new split. On the v1.0
split the results are similar to those on our split,



Input

Prediction

Madeleine L’Engle who is influenced by George
Macdonald wrote “ A Severed Wasp ™ .

A Severed Wasp was written by George Macdonald .
A Severed Wasp is from the United States .

The A.C. Lumezzane has 4150 members and play
in the Lega Pro League .

A.C. Lumezzane ’s ground is in the Lega Pro League .

A.C. Lumezzane has 4150 members .

Irish English is the official language of Ireland ,
which is lead by Enda Kenny and home to Adare

Adare Manor is located in Ireland .
English is the language of Ireland .

Manor .

English is the language of Ireland . (repeated x3)

Table 6: Predictions from the COPY512 model, trained on the new data split.

in spite of it being larger (1,331,515 vs. 886,857
examples), indicating that merely adding data will
not solve the task.

Analysis We inspect the models’ predictions for
the first 20 complex sentences of the original and
new validation sets in Table 7. We mark each sim-
ple sentence as being “correct” if it contains all
and only relevant information, “unsupported” if it
contains facts not present in the source, and “re-
peated” if it repeats information from a previous
sentence. We also count missing facts. Figure
2 shows the attention weights of the COPYS512
model for the same sentence in Figure 1. Reassur-
ingly, the attention is now distributed more evenly
over the input symbols. On the new splits, all
models perform catastrophically. Table 6 shows
outputs from the COPY512 model when trained
on the new split. On the original split, while
SEQ2SEQ128 mainly suffers from missing infor-
mation, perhaps due to insufficient memorization
capacity, SEQ2SEQ512 generated the most unsup-
ported sentences, due to overfitting or memoriza-
tion. The overall number of issues is clearly re-
duced in the copy-augmented models.
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of
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available
in
hardcover

A
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Figure 2: Attention weights from the COPY512
model for the same input as in Figure 1.
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Model unsup. repeated  correct missing
original split
SEQ2SEQ128 5 4 40/49 (82%) 9
SEQ2SEQ256 2 2 42/46 (91%) 5
SEQ2SEQ512 | 12 2 36/49 (73%) 5
CoprY128 3 4 42/49 (86%) 4
CopY256 3 2 45/50 (90%) 6
CorPY512 5 0 46/51 (90%) 3
new split
SEQ2SEQ128 | 37 8 0 54
SEQ2SEQ256 | 41 7 0 54
SEQ2SEQ512 43 5 0 54
CoprY128 23 3 2/27 (7%) 52
CopY256 35 2 3/40 (7%) 49
Cory512 36 13 11/54 (20%) 43
v1.0 split
Copry512 41 3 3/44 (7%) 51

Table 7: Results of the manual analysis, showing
the number of simple sentences with unsupported
facts (unsup.), repeated facts, missing facts and
correct facts, for 20 complex sentences from the
original and new validation sets.

6 Conclusions

We demonstrated that a SEQ2SEQ model can ob-
tain high scores on the original split-and-rephrase
task while not actually learning to split-and-
rephrase. We propose a new and more challenging
data-split to remedy this, and demonstrate that the
cheating SEQ2SEQ models fail miserably on the
new split. Augmenting the SEQ2SEQ models with
a copy-mechanism improves performance on both
data splits, establishing a new competitive base-
line for the task. Yet, the split-and-rephrase task
(on the new split) is still far from being solved.
We strongly encourage future research to evaluate
on our proposed split or on the recently released
version 1.0 of the dataset, which is larger and also
addresses the overlap issues mentioned here.
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Massively Multilingual Neural Machine Translation
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Abstract

Multilingual neural machine translation
(NMT) enables training a single model that
supports translation from multiple source lan-
guages into multiple target languages. In this
paper, we push the limits of multilingual NMT
in terms of the number of languages being
used. We perform extensive experiments in
training massively multilingual NMT models,
translating up to 102 languages to and from
English within a single model. We explore
different setups for training such models and
analyze the trade-offs between translation
quality and various modeling decisions. We
report results on the publicly available TED
talks multilingual corpus where we show
that massively multilingual many-to-many
models are effective in low resource settings,
outperforming the previous state-of-the-art
while supporting up to 59 languages. Our
experiments on a large-scale dataset with
102 languages to and from English and up to
one million examples per direction also show
promising results, surpassing strong bilingual
baselines and encouraging future work on
massively multilingual NMT.

1 Introduction

Neural machine translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Bahdanau et al., 2014;
Sutskever et al., 2014) is the current state-of-
the-art approach for machine translation in both
academia (Bojar et al., 2016, 2017, 2018) and in-
dustry (Wu et al., 2016; Hassan et al., 2018). Re-
cent works (Dong et al., 2015; Firat et al., 2016a;
Ha et al., 2016; Johnson et al., 2017) extended the
approach to support multilingual translation, i.e.
training a single model that is capable of translat-
ing between multiple language pairs.

Multilingual models are appealing for several
reasons. First, they are more efficient in terms

*Work carried out during an internship at Google Al

Melvin Johnson and Orhan Firat
Google Al
Mountain View
California
melvinp, orhanfl@google.com

of the number of required models and model pa-
rameters, enabling simpler deployment. Another
benefit is transfer learning; when low-resource
language pairs are trained together with high-
resource ones, the translation quality may improve
(Zoph et al., 2016; Nguyen and Chiang, 2017). An
extreme case of such transfer learning is zero-shot
translation (Johnson et al., 2017), where multilin-
gual models are able to translate between language
pairs that were never seen during training.

While very promising, it is still unclear how far
one can scale multilingual NMT in terms of the
number of languages involved. Previous works
on multilingual NMT typically trained models
with up to 7 languages (Dong et al., 2015; Fi-
rat et al., 2016b; Ha et al., 2016; Johnson et al.,
2017; Gu et al., 2018) and up to 20 trained direc-
tions (Cettolo et al., 2017) simultaneously. One
recent exception is Neubig and Hu (2018) who
trained many-to-one models from 58 languages
into English. While utilizing significantly more
languages than previous works, their experiments
were restricted to many-to-one models in a low-
resource setting with up to 214k examples per
language-pair and were evaluated only on four
translation directions.

In this work, we take a step towards practical
“universal” NMT - training massively multilin-
gual models which support up to 102 languages
and with up to one million examples per language-
pair simultaneously. Specifically, we focus on
training “English-centric” many-to-many models,
in which the training data is composed of many
language pairs that contain English either on the
source side or the target side. This is a realistic
setting since English parallel data is widely avail-
able for many language pairs. We restrict our ex-
periments to Transformer models (Vaswani et al.,
2017) as they were shown to be very effective
in recent benchmarks (Ott et al., 2018), also in
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the context of multilingual models (Lakew et al.,
2018; Sachan and Neubig, 2018).

We evaluate the performance of such massively
multilingual models while varying factors like
model capacity, the number of trained directions
(tasks) and low-resource vs. high-resource set-
tings. Our experiments on the publicly available
TED talks dataset (Qi et al., 2018) show that mas-
sively multilingual many-to-many models with up
to 58 languages to-and-from English are very ef-
fective in low resource settings, allowing to use
high-capacity models while avoiding overfitting
and achieving superior results to the current state-
of-the-art on this dataset (Neubig and Hu, 2018;
Wang et al., 2019) when translating into English.

We then turn to experiment with models trained
on 103 languages in a high-resource setting. For
this purpose we compile an English-centric in-
house dataset, including 102 languages aligned
to-and-from English with up to one million ex-
amples per language pair. We then train a sin-
gle model on the resulting 204 translation direc-
tions and find that such models outperform strong
bilingual baselines by more than 2 BLEU aver-
aged across 10 diverse language pairs, both to-
and-from English. Finally, we analyze the trade-
offs between the number of involved languages
and translation accuracy in such settings, showing
that massively multilingual models generalize bet-
ter to zero-shot scenarios. We hope these results
will encourage future research on massively mul-
tilingual NMT.

2 Low-Resource Setting: 59 Languages

2.1 Experimental Setup

The main question we wish to answer in this work
is how well a single NMT model can scale to
support a very large number of language pairs.
The answer is not trivial: on the one hand, train-
ing multiple language pairs together may result
in transfer learning (Zoph et al., 2016; Nguyen
and Chiang, 2017). This may improve perfor-
mance as we increase the number of language
pairs, since more information can be shared be-
tween the different translation tasks, allowing the
model to learn which information to share. On the
other hand, adding many language pairs may re-
sult in a bottleneck; the model has a limited ca-
pacity while it needs to handle this large number
of translation tasks, and sharing all parameters be-
tween the different languages can be sub-optimal

(Wang et al., 2018) especially if they are not from
the same typological language family (Sachan and
Neubig, 2018).

We begin tackling this question by experiment-
ing with the TED Talks parallel corpus compiled
by Qi et al. (2018)!, which is unique in that it in-
cludes parallel data from 59 languages. For com-
parison, this is significantly “more multilingual”
than the data available from all previous WMT
news translation shared task evaluations through-
out the years — the latest being Bojar et al. (2016,
2017, 2018), which included 14 languages so far.

We focus on the setting where we train
“English-centric” models, i.e. training on all
language pairs that contain English in either the
source or the target, resulting in 116 translation
directions. This dataset is also highly imbal-
anced, with language pairs including between 3.3k
to 214k sentence pairs for training. Table 9 in
the supplementary material details the languages
and training set sizes for this dataset. Since the
dataset is already tokenized we did not apply ad-
ditional preprocessing other than applying joint
subword segmentation (Sennrich et al., 2016) with
32k symbols.

Regarding the languages we evaluate on, we be-
gin with the same four languages as Neubig and
Hu (2018) — Azerbeijani (Az), Belarusian (Be),
Galician (Gl) and Slovak (Sk). These languages
present an extreme low-resource case, with as few
as 4.5k training examples for Belarusian-English.
In order to better understand the effect of training
set size in these settings, we evaluate on four ad-
ditional languages that have more than 167k train-
ing examples each — Arabic (Ar), German (De),
Hebrew (He) and Italian (It).

2.2 Model Details

Using the same data, we trained three massively
multilingual models: a many-to-many model
which we train using all 116 translation directions
with 58 languages to-and-from English, a one-to-
many model from English into 58 languages, and
a many-to-one model from 58 languages into En-
glish. We follow the method of Ha et al. (2016);
Johnson et al. (2017) and add a target-language

lgithub.com/neulab/
word-embeddings—-for—-nmt

2Chinese, Czech, English, Estonian, Finnish, French,
German, Hindi, Hungarian, Latvian, Romanian, Russian,
Spanish, Turkish. According to http://www.statmt.
org/wmt XX
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prefix token to each source sentence to enable
many-to-many translation. These different setups
enable us to examine the effect of the number of
translation tasks on the translation quality as mea-
sured in BLEU (Papineni et al., 2002). We also
compare our massively multilingual models to
bilingual baselines and to two recently published
results on this dataset (Neubig and Hu (2018);
Wang et al. (2019)).

Regarding the models, we focused on the Trans-
former in the “Base” configuration. We refer the
reader to Vaswani et al. (2017) for more details
on the model architecture. Specifically, we use 6
layers in both the encoder and the decoder, with
model dimension set at 512, hidden dimension
size of 2048 and 8 attention heads. We also ap-
plied dropout at a rate of 0.2 in the following com-
ponents: on the sum of the input embeddings and
the positional embeddings, on the output of each
sub-layer before added to the previous layer input
(residual connection), on the inner layer output af-
ter the ReL.U activation in each feed-forward sub-
layer, and to the attention weight in each attention
sub-layer. This results in a model with approx-
imately 93M trainable parameters. For all mod-
els we used the inverse square root learning rate
schedule from Vaswani et al. (2017) with learning-
rate set at 3 and 40k warmup steps. All models are
implemented in Tensorflow-Lingvo (Shen et al.,
2019).

In all cases we report test results for the check-
point that performed best on the development set
in terms of BLEU. For the multilingual models we
create a development set that includes examples
we uniformly sample from a concatenation of all
the individual language pair development sets, re-
sulting in 13k development examples per model.
Another important detail regarding multilingual
training is the batching scheme. In all of our mul-
tilingual models we use heterogeneous batching,
where each batch contains examples which are
uniformly sampled from a concatenation of all the
language pairs the model is trained on. Specifi-
cally, we use batches of 64 examples for sequences
shorter than 69 tokens and batches of 16 exam-
ples for longer sequences. We did not use over-
sampling as the dataset is relatively small.

2.3 Results

We use tokenized BLEU in order to be compara-
ble with Neubig and Hu (2018). Table 1 shows

Az-En Be-En GI-En Sk-En | Avg.
# of examples 59k 45k 10k 61k 20.3k
Neubig & Hu 18
baselines 2.7 2.8 162 24 11.42
many-to-one 11.7 183 29.1 283 |21.85
Wang et al. 18 11.82 1871 30.3  28.77 |22.4
Ours
many-to-one 11.24 18.28 28.63 26.78 |21.23
many-to-many | 12.78 21.73 30.65 29.54 | 23.67

Table 1: X—En test BLEU on the TED Talks corpus,
for the language pairs from Neubig and Hu (2018)

Ar-En De-En He-En It-En | Avg.
#of examples | 213k 167k 211k 203k | 198.5k
baselines 27.84 305 3437 33.64 | 31.59
many-to-one | 2593 28.87 30.19 32.42 | 29.35
many-to-many | 28.32 3297 33.18 35.14 | 324

Table 2: X—En test BLEU on the TED Talks corpus,
for language pairs with more than 167k examples

many-to-one dev many-to-one train

— many-to-many dev -e— many-to-many train

0.42

0 50000 100000 150000 200000

update

Figure 1: Development BLEU on
{It,Ro,NL,De,Ar}—En vs. training BLEU for the
many-to-one and many-to-many models. Best viewed
in color.

the results of our experiments when evaluating
on the same language pairs as they did. The re-
sults under “Neubig & Hu 18” are their bilin-
gual baselines and their best many-to-one models.
Their many-to-one models use similar-language-
regularization, i.e. fine-tuning a pre-trained many-
to-one model with data from the language pair of
interest together with data from a language pair
that has a typologically-similar source language
and more training data (i.e. Russian and Belaru-
sian, Turkish and Azerbaijani). The results under
“Ours” are our many-to-one and many-to-many
models we trained identically in terms of model
architecture and hyper-parameters.

We first note that our many-to-many model out-
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performs all other models when translating into
English, with 1.82 BLEU improvement (when av-
eraged across the four language pairs) over the
best fine-tuned many-to-one models of Neubig
and Hu (2018) and 2.44 BLEU improvement over
our many-to-one model when averaged across the
four low-resource language pairs (Table 1). This
is surprising as it uses the same X—En data,
model architecture and capacity as our many-to-
one model, while handling a heavier burden since
it also supports 58 additional translation tasks
(from English into 58 languages). Our models also
outperform the more complex models of Wang
et al. (2019) which use ”Soft Decoupled Encod-
ing” for the input tokens, while our models use a
simple subword segmentation.

One possible explanation is that the many-to-
one model overfits the English side of the corpus
as it is multi-way-parallel: in such setting the En-
glish sentences are overlapping across the differ-
ent language pairs, making it much easier for the
model to memorize the training set instead of gen-
eralizing (when enough capacity is available). On
the other hand, the many-to-many model is trained
on additional target languages other than English,
which can act as regularizers for the X—En tasks,
reducing such overfitting.

To further illustrate this, Figure 1 tracks the
BLEU scores on the individual development sets
during training for Italian (It), Romanian (Ro),
Dutch (NI), German (De) and Arabic (Ar) into En-
glish (left), together with BLEU scores on a sub-
set of the training set for each model. We can
see that while the many-to-one model degrades in
performance on the development set, the many-
to-many model still improves. Note the large
gap in the many-to-one model between the train-
ing set BLEU and the development set BLEU,
which points on the generalization issue that is
not present in the many-to-many setting. We also
note that our many-to-one model is on average
0.75 BLEU behind the best many-to-one models
in Neubig and Hu (2018). We attribute this to the
fact that their models are fine-tuned using similar-
language-regularization while our model is not.

We find an additional difference between the
results on the resource-scarce languages (Ta-
ble 1) and the higher-resource languages (Table
2). Specifically, the bilingual baselines outper-
form the many-to-one models only in the higher-
resource setting. This makes sense as in the low-

En-Az En-Be En-Gl En-Sk | Avg.
#of examples | 5.9k 4.5k 10k 61k 20.3k
baselines 216 247 326 58 3.42
one-to-many | 5.06  10.72 26.59 24.52 | 16.72
many-to-many | 3.9 7.24 2378 21.83 | 14.19

En-Ar En-De En-He En-It | Avg.
#of examples | 213k 167k 211k 203k | 198.5k
baselines 1295 2331 23.66 30.33 |22.56
one-to-many | 16.67 30.54 27.62 35.89 | 27.68
many-to-many | 14.25 2795 24.16 33.26 | 249

Table 3: En—X test BLEU on the TED Talks corpus

resource setting the baselines have very few train-
ing examples to outperform the many-to-one mod-
els, while in the higher resource setting they have
access to more training data. This corroborates the
results of Gu et al. (2018) that showed the sensi-
tivity of such models to similar low resource con-
ditions and the improvements gained from using
many-to-one models (however with much fewer
language pairs).

Table 3 shows the results of our massively
multilingual models and bilingual baselines when
evaluated out-of-English. In this case we see an
opposite trend: the many-to-many model performs
worse than the one-to-many model by 2.53 BLEU
on average. While previous works (Wang et al.,
2018; Sachan and Neubig, 2018) discuss the phe-
nomena of quality degradation in English-to-many
settings, this shows that increasing the number of
source languages also causes additional degrada-
tion in a many-to-many model. This degradation
may be due to the English-centric setting: since
most of the translation directions the model is
trained on are into English, this leaves less capac-
ity for the other target languages (while still per-
forming better than the bilingual baselines on all 8
language pairs). We also note that in this case the
results are consistent among the higher and lower
resource pairs — the one-to-many model is better
than the many-to-many model, which outperforms
the bilingual baselines in all cases. This is unlike
the difference we saw in the X— En experiments
since here we do not have the multi-way-parallel
overfitting issue.

2.4 Discussion

From the above experiments we learn that NMT
models can scale to 59 languages in a low-
resource, imbalanced, English-centric setting,
with the following observations: (1) massively
multilingual many-to-many models outperform
many-to-one and bilingual models with similar ca-
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pacity and identical training conditions when av-
eraged over 8 language pairs into English. We
attribute this improvement over the many-to-one
models to the multiple target language pairs which
may act as regularizers, especially in this low-
resource multi-way-parallel setting that is prone to
memorization. (2) many-to-many models are in-
ferior in performance when going out-of-English
in comparison to a one-to-many model. We at-
tribute this to English being over-represented in
the English-centric many-to-many setting, where
it appears as a target language in 58 out of 116
trained directions, which may harm the perfor-
mance on the rest of the target languages as the
model capacity is limited.?

It is important to stress the fact that we com-
pared the different models under identical training
conditions and did not perform extensive hyper-
parameter tuning for each setting separately. How-
ever, we believe that such tuning may improve
performance even further, as the diversity in each
training batch is very different between the dif-
ferent settings. For example, while the baseline
model batches include only one language in the
source and one language in the target, the many-
to-many model includes 59 languages in each
side with a strong bias towards English. These
differences may require tailored hyper-parameter
choices for each settings (i.e. different batch sizes,
learning rate schedules, dropout rates etc.) which
would be interesting to explore in future work.

In the following experiments we investigate
whether these observations hold using (1) an even
larger set of languages, and (2) a much larger,
balanced training corpus that is not multi-way-
parallel.

3 High-Resource Setting: 103 Languages

3.1 Experimental Setup

In this setting we scale the number of languages
and examples per language pair further when
training a single massively multilingual model.
Since we are not aware of a publicly available re-
source for this purpose, we construct an in-house
dataset. This dataset includes 102 language pairs
which we “mirror” to-and-from English, with up
to one million examples per language pair. This
results in 103 languages in total, and 204 trans-
lation directions which we train simultaneously.

3This issue may be alleviated by over-sampling the non-
English-target pairs, but we leave this for future work.

More details about this dataset are available in Ta-
ble 4, and Table 10 in the supplementary material
details all the languages in the dataset.*

Similarly to our previous experiments, we com-
pare the massively multilingual models to bilin-
gual baselines trained on the same data. We tok-
enize the data using an in-house tokenizer and then
apply joint subword segmentation to achieve an
open-vocabulary. In this setting we used a vocab-
ulary of 64k subwords rather than 32k. Since the
dataset contains 24k unique characters, a 32k sym-
bol vocabulary will consist of mostly characters,
thereby increasing the average sequence length.
Regarding the model, for these experiments we
use a larger Transformer model with 6 layers in
both the encoder and the decoder, model dimen-
sion set to 1024, hidden dimension size of 8192,
and 16 attention heads. This results in a model
with approximately 473.7M parameters.” Since
the model and data are much larger in this case,
we used a dropout rate of 0.1 for our multilingual
models and tuned it to 0.3 for our baseline models
as it improved the translation quality on the devel-
opment set.

We evaluate our models on 10 languages from
different typological families: Semitic — Arabic
(Ar), Hebrew (He), Romance — Galician (Gl),
Italian (It), Romanian (Ro), Germanic — German
(De), Dutch (NI), Slavic — Belarusian (Be), Slo-
vak (Sk) and Turkic — Azerbaijani (Az) and Turk-
ish (Tr). We evaluate both to-and-from English,
where each language pair is trained on up to one
million examples. As in the previous experiment,
we report test results from the model that per-
formed best in terms of BLEU on the development
set.

“The average number of examples per language pair is
940k, as for 13 out of the 102 pairs we had less than one
million examples available.

SThis is larger than the Transformer “Big” configuration,
which includes approximately 213M trained parameters.

# of language pairs | 102
examples per pair

min 63,879
max 1,000,000
average 940,087
std. deviation | 188,194
total # of examples | 95,888,938

Table 4: Training set details for the 103 langauges cor-
pus, X—En data.
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|[Ar Az Be De He It NI Ro Sk Tr |[Avg
baselines 2334 163 2193 30.18 31.83 3647 36.12 34.59 2539 27.13]|28.33
many-to-one | 26.04 23.68 25.36 35.05 33.61 35.69 36.28 36.33 28.35 29.75 | 31.01
many-to-many | 22.17 21.45 23.03 37.06 30.71 35.0 36.18 36.57 29.87 27.64 | 29.97

Table 5: X—En test BLEU on the 103-language corpus
Ar Az Be De He It NI Ro Sk Tr Avg.

baselines 10.57 8.07 153 23.24 19.47 31.42 28.68 2792 11.08 15.54 | 19.13

one-to-many 12.08 9.92 15.6 31.39 20.01 33 31.06 28.43 17.67 17.68 | 21.68

many-to-many | 10.57 9.84 14.3 28.48 1791 30.39 29.67 26.23 18.15 15.58 | 20.11

Table 6: En—X test BLEU on the 103-language corpus

3.2 Results

Table 5 describes the results when translating into
English. First, we can see that both multilingual
models perform better than the baselines in terms
of average BLEU. This shows that massively mul-
tilingual many-to-many models can work well in
realistic settings with millions of training exam-
ples, 102 languages and 204 jointly trained direc-
tions to-and-from English. Looking more closely,
we note several different behaviors in comparison
to the low-resource experiments on the TED Talks
corpus. First, the many-to-one model here per-
forms better than the many-to-many model. This
shows that the previous result was indeed due to
the pathologies of the low-resource dataset; when
the training data is large enough and not multi-
way-parallel there is no overfitting in the many-to-
one model, and it outperforms the many-to-many
model in most cases while they are trained identi-
cally.

One particular outlier in this case is German-to-
English, where the many-to-one model is 2 BLEU
points below the many-to-many model. We exam-
ine the BLEU score of this language pair on its
dedicated German-English development set dur-
ing training in the many-to-one model and find
that it highly fluctuates. We then measure the
performance on the test set for this language pair
by choosing the best checkpoint on the dedicated
German-English development set (instead of on
the mixed multilingual development set) and find
it to be 38.07, which is actually higher in 1 BLEU
than the best result of the many-to-many model.
This shows that while training many languages to-
gether, there is no “silver bullet”: some languages
may suffer from severe interference during train-
ing (i.e. a reduction of 3 BLEU in this case, from

38.07 to 35.05) while other languages continue to
improve with more updates.

Table 6 describes the results when translating
out-of-English. Again, both of the massively mul-
tilingual models perform better than the base-
lines when averaged across the 10 evaluated lan-
guage pairs, while handling up to 102 languages
to-and-from English and 204 translation tasks si-
multaneously. In this case the results are simi-
lar to those we observed on the TED talks cor-
pus, where the one-to-many model performs better
than the many-to-many model. Again, this advan-
tage may be due to the one-to-many model han-
dling a smaller number of tasks while not being
biased towards English in the target side like the
many-to-many model.

4 Analysis

The above results show that massively multilin-
gual NMT is indeed possible in large scale settings
and can improve performance over strong bilin-
gual baselines. However, it was shown in a some-
what extreme case with more than 100 languages
trained jointly, where we saw that in some cases
the joint training may harm the performance for
some language pairs (i.e. German-English above).
In the following analysis we would like to bet-
ter understand the trade-off between the number
of languages involved and the translation accu-
racy while keeping the model capacity and train-
ing configuration fixed.

4.1 Multilinguality & Supervised
Performance

We first study the effect of varying the num-
ber of languages on the translation accuracy in
a supervised setting, where we focus on many-
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Ar-En  En-Ar Fr-En En-Fr Ru-En En-Ru Uk-En En-Uk | Avg.
5-to-5 23.87 1242 3899 373 29.07 2486 26.17 1648 | 26.14
25-to-25 2343 11.77 38.87 36.79 2936 2324 2581 1717 | 25.8
50-to-50 23.7 11.65 37.81 3583 2922 2195 2602 1532 | 25.18
75-to-75 2223 1069 3797 3435 28.55 20.7 25.89 14.59 | 24.37
103-t0-103 | 21.16  10.25 3591 3442 2725 199 24,53  13.89 | 2341
Table 7: Supervised performance while varying the number of languages involved
| Ar-Fr  Fr-Ar  Ru-Uk Uk-Ru | Avg. tween the 5-to-5 and the 103-to-103 model.
5-to-5 1.66 4.49 3.7 3.02 3.21
25-to-25 1.83 5.52 16.67 4.31 7.08
50-to-50 4.34 4.72 15.14 20.23 11.1 4.2 Multilinguality & Zero-Shot
75-to-75 1.85 4.26 11.2 15.88 8.3
103-t0-103 | 287 305 123 1849 | 9.17 Performance

Table 8: Zero-Shot performance while varying the
number of languages involved

to-many models. We create four subsets of the
in-house dataset by sub-sampling it to a differ-
ent number of languages in each subset. In
this way we create four additional English-centric
datasets, containing 5, 25, 50 and 75 languages
each to-and-from English. We make sure that
each subset contains all the languages from the
next smaller subsets — i.e. the 25 language sub-
set contains the 5 language subset, the 50 lan-
guage subset contains the 25 language subset and
so on. We train a similar-capacity large Trans-
former model (with 473.7M parameters) on each
of these subsets and measure the performance for
each model on the 8 supervised language pairs
from the smallest subset — { Arabic, French, Rus-
sian, Ukrainian}<>English. In this way we can
analyze to what extent adding more languages im-
proves or harms translation quality while keeping
the model capacity fixed, testing the capacity vs.
accuracy “saturation point”.

Table 7 shows the results of this experiment,
reporting the test results for the models that per-
formed best on the multilingual development set.
We can see that in most cases the best results
are obtained using the 5-to-5 model, showing that
there is indeed a trade off between the number
of languages and translation accuracy when us-
ing a fixed model capacity and the same train-
ing setup. One may expect that the gaps between
the different models should become smaller and
even close with more updates, as the models with
more languages see less examples per language
in each batch, thus requiring more updates to im-
prove in terms of BLEU. However, in our setting
these gaps did not close even after the models con-
verged, leaving 2.73 average BLEU difference be-

We then study the effect of the number of lan-
guages on zero-shot translation accuracy. Since
we find zero-shot accuracy as an interesting mea-
sure for model generalization, we hypothesize that
by adding more languages, the model is forced to
create a more generalized representation to bet-
ter utilize its capacity, which may improve zero-
shot performance. We choose four language pairs
for this purpose: Arabic<>French which are dis-
tant languages, and Ukrainian<+Russian which are
similar. Table 8 shows the results of our models
on these language pairs. For Arabic«+French the
BLEU scores are very low in all cases, with the
50-t0-50 and 25-to-25 models being slightly bet-
ter than rest on Ar-Fr and Fr-Ar respectively. On
Russian<+Ukrainian we see clear improvements
when increasing the number of languages to more
than five.

Figure 2 further illustrates this, showing the bet-
ter generalization performance of the massively
multilingual models under this zero-shot setting.
While the zero-shot performance in this case is
low and unstable for the 5-to-5 and 25-to-25 mod-

® 5-t0-5 4 25-t0-25 ~ 50-to-50 * 75-to-75 = 103-to-103

20

BLEU

0 175000 350000 525000 70000C

update

Figure 2: Zero-shot BLEU during training for Ukra-
nian to Russian
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els, it is much better for the 50-to-50, 75-to-75 and
103-to-103 models. Given these results we can
say that the balance between capacity and general-
ization here favors the mid range 50-to-50 model,
even when using models with more than 473M
trained parameters. This may hint at the neces-
sity of even larger models for such settings, which
is a challenging avenue for future work. We also
note that our 103 language corpus includes up to
one million examples per language pair — while in
real-world MT deployments, systems are trained
on much more examples per pair. This again em-
phasizes the need for better techniques for training
such massively multilingual models as we may al-
ready be hitting the capacity barrier in our setting.

5 Related Work

Dong et al. (2015) extended the NMT model of
Bahdanau et al. (2014) to one-to-many translation
(from English into 4 languages) by adding a ded-
icated decoder per target language, showing im-
provements over strong single-pair baselines. Fi-
rat et al. (2016a,b) proposed many-to-many mod-
els (with up to 6 languages) by using separate en-
coders and decoders per language while sharing
the attention mechanism. They also introduced
the notion of zero-resource translation, where they
use synthetic training data generated through piv-
oting to train translation directions without avail-
able training data. Ha et al. (2016) and Johnson
et al. (2017) proposed to use a shared encoder-
decoder-attention model for many-to-many trans-
lation (with up to 7 languages in the latter). In
order to determine the target language in such
scenarios they proposed adding dedicated target-
language symbols to the source. This method en-
abled zero-shot translation, showing the ability of
the model to generalize to unseen pairs.

Recent works propose different methods for pa-
rameter sharing between language pairs in mul-
tilingual NMT. Blackwood et al. (2018) propose
sharing all parameters but the attention mechanism
and show improvements over sharing all param-
eters. Sachan and Neubig (2018) explore shar-
ing various components in self-attentional (Trans-
former) models. Lu et al. (2018) add a shared “in-
terlingua” layer while using separate encoders and
decoders. Zaremoodi et al. (2018) utilize recurrent
units with multiple blocks together with a trainable
routing network. Platanios et al. (2018) propose
to share the entire network, while using a contex-

tual parameter generator that learns to generate the
parameters of the system given the desired source
and target languages. Gu et al. (2018) propose
a “Universal Language Representation” layer to-
gether with a Mixture-of-Language-Experts com-
ponent to improve a many-to-one model from 5
languages into English.

While the mentioned studies provide valuable
contributions to improving multilingual models,
they apply their models on only up to 7 languages
(Johnson et al., 2017) and 20 trained directions
(Cettolo et al., 2017) in a single model, whereas
we focus on scaling NMT to much larger num-
bers of languages and trained directions. Regard-
ing massively multilingual models, Neubig and
Hu (2018) explored methods for rapid adaptation
of NMT to new languages by training multilin-
gual models on the 59-language TED Talks cor-
pus and fine-tuning them using data from the new
languages. While modeling significantly more
languages than previous studies, they only train
many-to-one models, which we show are inferior
in comparison to our proposed massively multi-
lingual many-to-many models when evaluated into
English on this dataset.

Tiedemann (2018) trained an English-centric
many-to-many model on translations of the bible
including 927 languages. While this work pointed
to an interesting phenomena in the latent space
learned by the model where it clusters repre-
sentations of typologically-similar languages to-
gether, it did not include any evaluation of the
produced translations. Similarly, Malaviya et al.
(2017) trained a many-to-English system includ-
ing 1017 languages from bible translations, and
used it to infer typological features for the dif-
ferent languages (without evaluating the transla-
tion quality). In another relevant work, Artetxe
and Schwenk (2018) trained an NMT model on
93 languages and used the learned representations
to perform cross-lingual transfer learning. Again,
they did not report the performance of the transla-
tion model learned in that massively multilingual
setting.

6 Conclusions and Future Work

We showed that NMT models can successfully
scale to 102 languages to-and-from English with
204 trained directions and up to one million ex-
amples per direction. Such models improve the
translation quality over similar single-pair base-
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lines when evaluated to and from English by more
than 2 BLEU when averaged over 10 diverse lan-
guage pairs in each case. We show a similar re-
sult on the low-resource TED Talks corpus with 59
languages and 116 trained directions. We analyze
the trade-offs between translation quality and the
number of languages involved, pointing on capac-
ity bottlenecks even with very large models and
showing that massively multilingual models can
generalize better to zero-shot settings.

We hope this work will encourage future re-
search on massively multilingual NMT, enabling
easier support for systems that can serve more peo-
ple around the globe. There are many possible av-
enues for future work, including semi-supervised
learning in such settings, exploring ways to re-
duce the performance degradation when increas-
ing the number of languages, or using such models
for multilingual transfer learning (McCann et al.,
2017; Eriguchi et al., 2018; Artetxe and Schwenk,
2018). Understanding and improving zero-shot
performance in such scenarios is also a promising
direction for future work.
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Language Train set size
Arabic 214111
Hebrew 211819
Russian 208458
Korean 205640
Italian 204503
Japanese 204090
Chinese-Taiwan 202646
Chinese-China 199855
Spanish 196026
French 192304
Portuguese-Brazil | 184755
Dutch 183767
Turkish 182470
Romanian 180484
Polish 176169
Bulgarian 174444
Vietnamese 171995
German 167888
Persian 150965
Hungarian 147219
Serbian 136898
Greek 134327
Croatian 122091
Ukrainian 108495
Czech 103093
Thai 98064
Indonesian 87406
Slovak 61470
Swedish 56647
Portuguese 51785
Danish 44940
Albanian 44525
Lithuanian 41919
Macedonian 25335
Finnish 24222
Burmese 21497
Armenian 21360
French-Canadian 19870
Slovenian 19831
Hindi 18798
Norwegian 15825
Kannada 13193
Estonian 10738
Kurdish 10371
Galician 10017
Marathi 9840
Mongolian 7607
Esperanto 6535
Tamil 6224
Urdu 5977
Azerbaijani 5946
Bosnian 5664
Chinese 5534
Malay 5220
Basque 5182
Bengali 4649
Belarusian 4509
Kazakh 3317

Languages

Afrikaans
Albanian
Ambharic
Arabic
Armenian
Azerbaijani
Basque
Belarusian
Bengali
Bosnian
Bulgarian
Burmese
Catalan
Cebuano
Chichewa*
Chinese
Corsican*
Croatian
Czech
Danish
Dutch
Esperanto
Estonian
Finnish
French
Frisian
Galician
Georgian
German
Greek
Gujarati

Haitian Creole

Hausa*
Hawaiian*
Hebrew
Hindi
Hmong*
Hungarian
Icelandic
Igbo
Indonesian
Irish
Italian
Japanese
Javanese
Kannada
Kazakh
Khmer
Korean
Kurdish

Kyrgyz

Laothian
Latin
Latvian
Lithuanian
Luxembourgish*
Macedonian
Malagasy
Malay
Malayalam
Maltese
Maori
Marathi
Mongolian
Nepali
Norwegian
Pashto
Persian
Polish
Portuguese
Punjabi
Romanian
Russian
Samoan*
Scots Gaelic*
Serbian
Sesotho
Shona*
Sindhi*
Sinhalese
Slovak
Slovenian
Somali
Spanish
Sundanese
Swahili
Swedish
Tagalog
Tajik*
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Uzbek
Vietnamese
Welsh
Xhosa
Yiddish
Yoruba*
Zulu

Table 10: Language pairs in the in-house dataset (102
languages, paired with English). For languages marked
with * we had less than 1M examples, while for the rest

we used exactly 1M.

Table 9: Language pairs in the TED talks dataset (58
languages, paired with English) with the train-set size

for each pair.

3884



Chapter 7

Unsupervised Domain Clusters

in Pretrained Language Models

75



Unsupervised Domain Clusters in Pretrained Language Models

Roee Aharoni! & Yoav Goldberg'?
! Computer Science Department, Bar Ilan University
2 Allen Institute for Artificial Intelligence
first.last@gmail.com

Abstract

The notion of “in-domain data” in NLP is of-
ten over-simplistic and vague, as textual data
varies in many nuanced linguistic aspects such
as topic, style or level of formality. In addi-
tion, domain labels are many times unavail-
able, making it challenging to build domain-
specific systems. We show that massive pre-
trained language models implicitly learn sen-
tence representations that cluster by domains
without supervision — suggesting a simple data-
driven definition of domains in textual data.
We harness this property and propose domain
data selection methods based on such models,
which require only a small set of in-domain
monolingual data. We evaluate our data se-
lection methods for neural machine translation
across five diverse domains, where they outper-
form an established approach as measured by
both BLEU and by precision and recall of sen-
tence selection with respect to an oracle.

1 Introduction

It is common knowledge in modern NLP that us-
ing large amounts of high-quality training data is a
key aspect in building successful machine-learning
based systems. For this reason, a major challenge
when building such systems is obtaining data in
the domain of interest. But what defines a do-
main? Natural language varies greatly across top-
ics, styles, levels of formality, genres and many
other linguistic nuances (van der Wees et al., 2015;
van der Wees, 2017; Niu et al., 2017). This over-
whelming diversity of language makes it hard to
find the right data for the task, as it is nearly im-
possible to well-define the exact requirements from
such data with respect to all the aforementioned
aspects. On top of that, domain labels are usually
unavailable — e.g. in large-scale web-crawled data
like Common Crawl! which was recently used to

"https://commoncrawl.org/

it

e koran

A e subtitles

me e medical
’ e law

Figure 1: A 2D visualization of average-pooled BERT
hidden-state sentence representations using PCA. The
colors represent the domain for each sentence.

train state-of-the-art pretrained language models
for various tasks (Raffel et al., 2019).

Domain data selection is the task of selecting the
most appropriate data for a domain from a large cor-
pus given a smaller set of in-domain data (Moore
and Lewis, 2010; Axelrod et al., 2011; Duh et al.,
2013; Silva et al., 2018). In this work, we propose
to use the recent, highly successful self-supervised
pre-trained language models, e.g. Devlin et al.
(2019); Liu et al. (2019) for domain data selec-
tion. As pretrained LMs demonstrate state-of-the-
art performance across many NLP tasks after being
trained on massive amounts of data, we hypothe-
size that the robust representations they learn can
be useful for mapping sentences to domains in an
unsupervised, data-driven approach. We show that
these models indeed learn to cluster sentence repre-
sentations to domains without further supervision
(e.g. Figure 1), and quantify this phenomenon by
fitting Gaussian Mixture Models (GMMs) to the
learned representations and measuring the purity
of the resulting clustering. We then propose meth-



ods to leverage these emergent domain clusters for
domain data selection in two ways:

e Via distance-based retrieval in the sentence
embedding space induced by the pretrained
language model.

e By fine-tuning the pretrained language model
for binary classification, where positive exam-
ples are from the domain of interest.

Our methods enable to select relevant data for
the task while requiring only a small set of mono-
lingual in-domain data. As they are based solely
on the representations learned by self-supervised
LMs, they do not require additional domain la-
bels which are usually vague and over-simplify
the notion of domain in textual data. We evaluate
our method on data selection for neural machine
translation (NMT) using the multi-domain German-
English parallel corpus composed by Koehn and
Knowles (2017). Our data selection methods en-
able to train NMT models that outperform those
trained using the well-established cross-entropy dif-
ference method of Moore and Lewis (2010) across
five diverse domains, achieving a recall of more
than 95% in all cases with respect to an oracle that
selects the “true” in-domain data.

Our contributions in this work are as follows.
First, we show that pre-trained language models
are highly capable of clustering textual data to do-
mains with high accuracy in a purely unsupervised
manner. Second, we propose methods to select
in-domain data based on this property using vector-
space retrieval and positive-unlabeled fine-tuning
of pretrained language models for binary classifica-
tion. Third, we show the applicability of our pro-
posed data selection methods on a popular bench-
mark for domain adaptation in machine translation.
An additional contribution is a new, improved data
split we create for this benchmark, as we point on
issues with previous splits used in the literature.
We hope this work will encourage more research
on understanding the data landscape in NLP, en-
abling to “find the right data for the task™ in the age
of massive models and diverse data sources.

2 Emerging Domain Clusters in
Pretrained Language Models

Motivation The proliferation of massive pretrained
neural language models such as ELMo (Peters
et al.,, 2018), BERT (Devlin et al., 2019) or

RoBERTa (Liu et al., 2019) has enabled great
progress on many NLP benchmarks (Wang et al.,
2018, 2019a). Larger and larger models trained
on billions of tokens of raw text are released in an
ever-increasing pace (Raffel et al., 2019), enabling
the NLP community to fine-tune them for the task
of interest. While many works tried to “probe”
those models for the morphological, syntactic and
semantic information they capture (Tenney et al.,
2019; Goldberg, 2019; Clark et al., 2019), an im-
portant aspect of language remained overlooked
in this context — the domain the data comes from,
often referred to as the “data distribution”.

The definition of domain is many times vague
and over-simplistic (e.g. “medical text” may be
used for biomedical research papers and for clin-
ical conversations between doctors and patients,
although the two vary greatly in topic, formality
etc.). A common definition treats a domain as a
data source: “a domain is defined by a corpus from
a specific source, and may differ from other do-
mains in topic, genre, style, level of formality, etc.”
(Koehn and Knowles, 2017). We claim that a more
data-driven definition should take place, as differ-
ent data sources may have sentences with similar
traits and vice versa - a single massive web-crawled
corpus contains texts in numerous styles, topics and
registers. Our analysis in Section 2 shows examples
for such cases, e.g. a sentence discussing “Viruses
and virus-like organisms” in a legal corpus.

Unsupervised Domain Clustering We hypoth-
esize that massive pretrained LMs can learn rep-
resentations that cluster to domains, as texts
from similar domains will appear in similar con-
texts. We test this hypothesis across several large,
publicly-available pretrained LMs; we explore
both masked-language-models (MLMs) and auto-
regressive LMs.

Method We encode multi-domain data at the
sentence level into vector representations. We then
cluster these vector representations for each model
using a Gaussian Mixture Model (GMM) with k&
pre-defined clusters. In all cases, to create a sen-
tence representation we perform average pooling
of the last hidden state (before the softmax layer)
for each token in the sentence.? To accelerate the
clustering process and enable visualization we also
experiment with performing dimensionality reduc-
tion with PCA over the sentence vectors before

Using the penultimate layer or others may also be a valid
choice; we leave this for future work.



k=5 k=10 k=15
Random | 15.08 (£0.0) 16.77 (£0.0) 17.78 (£0.0)
LDA 2431 (£0.99) | 26.73 (£2.19) | 30.79 (£2.97)
with PCA (n=50) without PCA

k=5 k=10 k=15 k=5 k=10 | k=15
word2vec 53.65 (£0.79) | 68.14 (£2.58) | 73.44 (+0.68) | 45.93 | 65.80 | 76.26
BERT-base 87.66 (+£0.24) | 88.02 (£1.10) | 88.37 (+0.66) | 85.74 | 85.08 | 86.37
BERT-large 85.64 (+6.13) | 87.61 (£0.26) | 89.07 (£0.53) | 68.56 | 86.53 | 86.99
DistillBERT 83.68 (£7.14) | 86.31 (£0.86) | 87.53 (£0.85) | 79.00 | 86.42 | 88.14
RoBERTa-base | 79.05 (£0.10) | 86.39 (£0.90) | 86.51 (+0.28) | 70.21 | 80.35 | 81.49
RoBERTa-large | 80.61 (£0.33) | 89.04 (+0.15) | 89.94 (£0.23) | 69.88 | 81.07 | 85.91
GPT-2 70.30 (£0.05) | 84.76 (£0.30) | 82.56 (+1.29) | 37.82 | 39.02 | 41.45
XLNet 55.72 (£0.69) | 68.17 (£3.93) | 72.65 (£1.92) | 30.36 | 32.96 | 48.55

Table 1: Unsupervised domain clustering as measured by purity for the different models. Best results are marked

in bold for each setting.

clustering them. We experiment with k in 5, 10 and
15 to test how adding flexibility would improve the
domain clustering accuracy.

Models and Baselines For MLM-based models
we use BERT (Devlin et al., 2019), DistilBERT
(Sanh et al., 2019) and RoBERTa (Liu et al., 2019)
(in both the base and large versions). For autore-
gressive models we use GPT-2 (Radford et al.,
2018) and XLNet (Yang et al., 2019). In all cases
we use the implementations from the Hugging-
Face Transformers toolkit (Wolf et al., 2019). We
also evaluated three additional, simpler baselines.
The first is using representations from word2vec
(Mikolov et al., 2013), where we average-pooled
the word vectors for the tokens that were present in
the model vocabulary. The second is using Latent
Dirichlet Allocation (LDA, Blei et al., 2003), which
is a classic approach to unsupervised clustering of
text.> We also report results for a baseline which
assigns sentences by sampling randomly from a
uniform distribution over the clusters.

Evaluation To evaluate the unsupervised do-
main clustering we used the multi-domain corpus
proposed by Koehn and Knowles (2017) which
includes textual data in five diverse domains: subti-
tles*, medical text (PDF documents from the Euro-
pean Medicines Agency), legal text (legislative text
of the European Union), translations of the Koran,
and IT-related text (manuals and localization files
of open-source software). See more details on this
dataset in Section 3.1. We used 2000 distinct sen-
tences from each domain. To evaluate whether the
resulting clusters indeed capture the domains the
data was drawn from we measure the purity metric,
where we assign each unsupervised cluster with the

>We used the LDA implementation provided in the Gensim
toolkit: https://radimrehurek.com/gensim/
*From http://www.opensubtitles.org/

most common domain in the sentences assigned
to that cluster, and then compute the accuracy ac-
cording to this majority-based assignment. In cases
where randomness is involved we run each exper-
iment five times with different initializations and
report the mean and variance of the purity metric
for each model.

Results and Discussion As can be seen in Table
1, pre-trained language models are indeed highly
capable of generating sentence representations that
cluster by domains, resulting in up to 87.66%,
89.04% and 89.94% accuracy when using k=5,
k=10 and k=15 clusters, respectively, across 10,000
sentences in 5 domains. We find these scores re-
markably high given that our average-pooling strat-
egy is very straight-forward and that no domain-
supervision was involved in the process of learn-
ing the pre-trained representations. Figure 2 also
demonstrates the quality of the obtained clusters in
2D using the BERT-base model, where the ellipses
describe the mean and variance parameters learned

it

koran

e subtitles
medical

e law

Figure 2: A 2D visualization of the unsupervised GMM
clustering for the same sentences as in Figure 1.



for each cluster by the GMM with k = 5.0

We note that some classes of models did bet-
ter than others: while all vector-based models did
far better than the random and LDA baselines, the
MLM-based models dominated in all cases over
word2vec and the auto-regressive models. This
may be explained by the fact that the MLM-based
models use the entire sentence context when gen-
erating the representations for each token, while
the auto-regressive models only use the past con-
text, and word2vec uses a limited window context.
Using PCA improved performance in most cases
and especially for the auto-regressive models, al-
though the results for the MLMs remain high in
both cases — suggesting that these models encode
the information very differently.

Analysis As can be seen in Figure 2, in some
areas the domains are somewhat overlapping in
the embedding space, which may lead to outlier
cases where examples from one domain are as-
signed to a cluster of a another domain. We plot
a confusion matrix (Figure 3) to analyze this fur-
ther based on the clustering with BERT-base and
k=5. We first note that the outlier sentences are
much shorter than the average sentence length in
the corpus (11.62 tokens on average for outliers
vs. 20.5 tokens on average in general). This makes
sense as shorter sentences contain less information,
making it harder to assign them to an appropriate
cluster. Table 2 shows examples of outlier sen-
tences, assigned to clusters of domains different

SSimilar visualizations for additional models are available
in the supplementary material.

koran A

subtitles { 47 21

True label

medical 1 340 0

law 4 206 0

Predicted label

Figure 3: A confusion matrix for clustering with k=5
using BERT-base.

from their originating domain. We can see that
in many cases the assignments are sensible — for
example for sentences originating from the subti-
tles corpus, a sentence that mentions “great priest”
is assigned to the Koran cluster, a sentence that
mentions “The International Criminal Court in The
Hague” is assigned to the Law cluster, a sentence
that mentions “the virus” is assigned to the Medical
cluster and so on. This strengthens our claim that
defining domains based on the corpus they orig-
inated from may be over-simplistic, and using a
more data-driven approach may enable to find bet-
ter domain assignments across different corpora.
The domain that attracted the largest number

Subtitles assigned to Koran

Subtitles assigned to Medical

T'am Spa’am, high priest of the boars. Oxygen supply at 50%.
Joseph, go in peace, and the Lord be with you. Or it can help her walk again if the virus is kept in check
with this.

Subtitles assigned to IT

Subtitles assigned to Law

Push it up to the front of the screen.

Statutes, transcripts, redacted immunity agreements.

Polyalloy requires programming to take permanent
form.

The Security Council therefore must press for his immediate
referral to the International Criminal Court in The Hague.

Law assigned to Medical

Law assigned to IT

- Viruses and virus-like organisms

“INFORMATION SOCIETY STATISTICS

where the glucose content is equal to or less than
the fructose content.

This document must be attached to the certificate and field
with it, except where there is a computerised checking system.

Medical assigned to Law

Medical assigned to IT

This will be introduced by a Regulation adopted by the
European Commission.

An updated and improved version of the CD-ROM was issued
to all subscribers during the first half of the year.

The marketing authorisation was renewed on 22 May
2002 and 22 May 2007.

- All tables will be based on generic and not product-specific
data.

IT assigned to Medical

IT assigned to Subtitles

R65: Harmful: may cause lung damage if swallowed

At the end we say good bye.

Automatic Red-Eye Removal

What would you like to do for your next shot?

Table 2: Sentences from one domain which were assigned to a cluster of another domain by the BERT-based

clustering, k=5.



of outliers is the IT domain cluster, with 597 sen-
tences assigned to it from other domains. Looking
more closely we find that more than half of these
sentences (340 out of 597) included numbers (e.g.
“34% 25% 34%" (from medical), “(b) reference
number 20 is deleted;” (from law), “(Command of
Prostration # 1)” (from Koran) or “The message,
R2.” (from subtitles)). As numbers appear in many
different contexts, they may be harder to assign to
a specific domain by the context-aware language
models in such short sentences. The second largest
attractor of outliers is the Subtitles cluster, with
372 sentences assigned to it from other domains.
We find that most of these sentences contain per-
sonal pronouns or question marks (228 out of 372,
61.2%) while the ratio of such sentences in the en-
tire corpus is only 40%. Examples include “Why
did you choose the name & amarok;?” (from IT),
or “What is Avonex?” (from Medical). This may
be expected as the subtitles corpus mainly includes
transcriptions of spoken, conversational language,
and “conversation tends to have more verbs, more
personal pronouns, and more questions” (Conrad
and Biber, 2005). Another possible reason for the
subtitles domain to attract outliers is the fact that
this is the least-topical cluster: movies and TV
series may discuss diverse topics, unlike medical,
religious, legal and technical texts that may have a
more cohesive topic.

3 Neural Machine Translation in a
Multi-Domain Scenario

As we showed that pre-trained language models
are indeed very useful in clustering sentence repre-
sentations by domains in an unsupervised manner,
we now seek to harness this property for a down-
stream task — domain data selection for machine
translation. Domain data selection is the task of
selecting examples from a large corpus which are
as close as possible to the domain of interest, given
a smaller set of in-domain examples. The selected
examples can be used to either (1) train a domain-
specific model from scratch (Axelrod et al., 2011),
(2) fine-tune a pre-trained general-domain model
(Silva et al., 2018), or (3) prioritize data for anno-
tation as in an Active-Learning framework, if only
monolingual data is available (Haffari et al., 2009).
To demonstrate the need for domain data selection
and set the stage for our data selection experiments,
we perform preliminary experiments with NMT in
a multi-domain scenario.

Original New Split
Medical | 1,104,752 248,099
Law 715,372 467,309
IT 378,477 222,927
Koran 533,128 17,982
Subtitles | 22,508,639 | 14,458,058

Table 3: Number of training examples for each domain
in the original split (Miiller et al., 2019) and in our split.

3.1 Multi-Domain Dataset

To simulate a diverse multi-domain setting we use
the dataset proposed in Koehn and Knowles (2017),
as it was recently adopted for domain adaptation
research in NMT (Hu et al., 2019; Miiller et al.,
2019; Dou et al., 2019a,b). The dataset includes
parallel text in German and English from five di-
verse domains (Medical, Law, Koran, IT, Subtitles;
as discussed in Section 2), available via OPUS
(Tiedemann, 2012; Aulamo and Tiedemann, 2019).

In a preliminary analysis of the data we found
that in both the original train/dev/test split by
Koehn and Knowles (2017) and in the more re-
cent split by Miiller et al. (2019) there was overlap
between the training data and the dev/test data.’
Fixing these issues is important, as it may affect
the conclusions one draws from experiments with
this dataset. For example, as overlapping devel-
opment sets favor memorization of the training
set, one may choose checkpoints and report results
on over-fitting models. This is especially relevant
with neural sequence-to-sequence models, as they
are highly susceptible to memorization (Aharoni
and Goldberg, 2018) and hallucination (Lee et al.,
2018), as confirmed by Miiller et al. (2019).

To create a better experimental setting to test
generalization within and across domains, we cre-
ate a new data split where we ensure that no such
overlap between the training, development and test
sets occur. We started from the split of Miiller et al.
(2019) as it included newer versions of some of the
datasets.” Furthermore, we did not allow more than
one translation of a given source or target sentence,
as such cases were very frequent in the dataset and
usually stand for duplicate sentence pairs (See Ta-
ble 3). For example, applying this filtering reduced
the size of the Koran corpus from 533,128 sen-
tences to only 17,982 sentences. Finally, following
Miiller et al. (2019) we cap the subtitles corpus to
500,000 sentence pairs as it is much larger than the
rest. We make the new split publicly available and

®More details are available in the supplementary material.
"Their dataset is available in: https://github.com/
ZurichNLP/domain-robustness



hope it will enable better future experimentation
on this important subject.’

3.2 Cross-Domain Experiments

Experimental Setup We follow Hu et al. (2019)
and train domain-specific models for all domains.
We then evaluate each model across the different
domain test sets, enabling us to understand the ef-
fect of different domains on the downstream MT
performance and to set up strong baselines for data
selection experiments. We also train a general-
domain model using the available data from all
domains, as it is also a common approach in multi-
domain scenarios (Miiller et al., 2019). In all ex-
periments we use a similar Transformer (Vaswani
et al., 2017) model, and only control for the train-
ing data. More details on the exact training and
hyperparameter settings for the NMT models are
available in the supplementary material.

Results The results for the cross-domain evalua-
tion are available in Table 4. In most cases, the best
results for each domain are obtained by training on
the in-domain data. Training on all the available
data helped mostly for the Koran test set. This is
expected as the training data for this domain is con-
siderably smaller than the training data for rest of
the domains (Table 3). We can also see that more
data is not necessarily better (Gascé et al., 2012):
while the subtitles corpus is the largest of all 5 and
includes 500,000 sentence pairs, it is second to last
in performance as measured by the average BLEU
across all test sets.

Cross-Domain BLEU vs. Cluster Proximity
An interesting observation can be made with re-
spect to the visual analysis of the domain clusters
as depicted in Figure 2: as the Medical cluster
(in Yellow), Law cluster (in Purple) and IT cluster
(in Red) are close to each other in the embedding
space, their cross-domain BLEU scores are also
higher. For example, note how in the results for the
Medical domain-specific model (first row in Table
4), the BLEU scores on the Law and IT test sets are
much higher in comparison to those on the Koran
and Subtitles test sets, which clusters are farther
away in the visualized embedding space. Simi-
larly, as the Subtitles cluster (Blue) is closer to the
Koran cluster (Green), the highest cross-domain
BLEU score on the Koran test set is from the Sub-
titles model. This suggests that such preliminary

$https://github.com/roeeaharoni/
unsupervised-domain-clusters

Medical | Law | Koran IT Subtitles
Medical 56.5 18.3 1.9 11.4 4.3
Law 21.7 59 2.7 13.1 54
Koran 0.1 0.2 15.9 0.2 0.5
IT 14.9 9.6 2.8 43 8.6
Subtitles 7.9 5.5 6.4 8.5 27.3
All 53.3 572 1 209 | 42.1 27.6

Table 4: SacreBLEU (Post, 2018) scores of our base-
line systems on the test sets of the new data split. Each
row represents the results from one model on each test
set. The best result in each column is marked in bold.

visual analysis can be a useful tool for understand-
ing the relationship between diverse datasets, and
motivates the use of pre-trained language model
representations for domain data selection in MT.

4 Domain Data Selection with Pretrained
Language Models

As shown in the previous section, using the right
data is critical for achieving good performance on
an in-domain test set, and more data is not neces-
sarily better. However, in real-world scenarios, the
availability of data labeled by domain is limited,
e.g. when working with large scale, web-crawled
data. In this section we focus on a data-selection
scenario where only a very small number of in-
domain sentences are used to select data from a
larger unlabeled parallel corpus. An established
method for data selection was proposed by Moore
and Lewis (2010), which was also used in training
the winning systems in WMT 2019 (Ng et al., 2019;
Barrault et al., 2019). This method compares the
cross-entropy, according to domain-specific and
non-domain-specific language models, for each
candidate sentence for selection. The sentences
are then ranked by the cross-entropy difference,
and only the top sentences are selected for training.

While the method by Moore and Lewis (2010)
is tried-and-true, it is based on simple n-gram lan-
guage models which cannot generalize beyond the
n-grams that are seen in the in-domain set. In ad-
dition, it is restricted to the in-domain and general-
domain datasets it is trained on, which are usually
small. On the contrary, pre-trained language mod-
els are trained on massive amounts of text, and, as
we showed through unsupervised clustering, learn
representations with domain-relevant information.
In the following sections, we investigate whether
this property of pretrained language models makes
them useful for domain data selection.



4.1 Methods

We propose two methods for domain data selection
with pretrained language models.

Domain-Cosine In this method we first compute
a query vector, which is the element-wise average
over the vector representations of the sentences in
the small in-domain set. We use the same average-
pooling approach as described in Section 2. We
then retrieve the most relevant sentences in the
training set by computing the cosine similarity of
each sentence with this query vector and ranking
the sentences accordingly.

Domain-Finetune It is now common knowl-
edge that pretrained language models are especially
useful when fine-tuned for the task of interest in
an end-to-end manner. In this method we fine-
tune the pretrained LM for binary classification,
where we use the in-domain sentences as positive
examples, and randomly sampled general-domain
sentences as negative examples. We then apply
this classifier on the general-domain data and pick
the sentences that are classified as positive as in-
domain, or choose the top-k sentences as ranked
by the classifier output distribution.

Negative Sampling with Pre-ranking One
problem that may rise in this case is that unlabeled
in-domain sentences from the general-domain data
may be sampled as negative examples and deteri-
orate the classifier performance. To alleviate this
issue, we perform a biased sampling of negative
examples. We first rank the general-domain data
using the Domain-Cosine method, and then sample
negative examples under a certain threshold in the
ranking (in our experiments we sampled from the

without pre-ranking with pre-ranking
p r F1 p T F1
Subtitles | 0.722 | 0.984 | 0.833 | 0.964 | 0.978 | 0.971
Law 0.761 | 0.94 | 0.841 | 0.944 | 094 | 0.942
Medical | 0.821 | 0.916 | 0.866 | 0.929 | 0.92 | 0.925
IT 0.848 | 0.956 | 0.898 | 0.955 | 0.98 | 0.967
Koran 0.966 | 0.958 | 0.962 | 0.994 | 0.974 | 0.984

Table 5: Ablation analysis showing precision (p) recall
(r) and F1 for the binary classification accuracy on a
held-out set, with and without pre-ranking.

bottom two-thirds). Table 5 shows an ablation for
pre-ranking, measuring precision, recall and F1 for
binary classification on a held-out set for each do-
main. When not using pre-ranking, as the training
data for the domain is larger, the precision is lower
— since more in-domain examples are drawn as neg-
ative samples. Given these results we always use
pre-ranking in the following experiments.

4.2 Experimental Setup

We perform data selection experiments for each do-
main in the multi-domain dataset. As the small set
of monolingual in-domain data we take the 2000
development sentences from each domain. For the
general-domain corpus we concatenate the training
data from all domains, resulting in 1,456,317 sen-
tences. To enable faster experimentation we used
DistilBERT (Sanh et al., 2019) for the Domain-
Cosine and Domain-Finetune methods. More tech-
nical details are available in the supplementary ma-
terial. We compare our methods to four approches:
(1) The established method by Moore and Lewis
(2010), (2) a random selection baseline, (3) an ora-
cle which is trained on all the available in-domain
data, and (4) the model we train on all the domains
concatenated. We select the top 500k examples to
cover the size of every specific in-domain dataset.
We train Transformer NMT models on the selected
data with a similar configuration to the ones trained
in the cross-domain evaluation.

4.3 Results

The results are available in Table 6. We can see
that all selection methods performed much better
in terms of BLEU than random selection. With
respect to average performance across all domains,
Moore-Lewis performed better than the Domain-
Cosine method, while Domain-Finetune performed
best. Using the positive examples alone (Domain-
Finetune-Positive) performed worse than using the
top 500k examples but better than Domain-Cosine,
while not requiring to determine the number of
selected sentences. The average performance in

Medical | Law | Koran | IT | Subtitles | Average
Random-500k 49.8 533 185 | 375 25.5 36.92
Moore-Lewis-Top-500k 55 58 214 | 427 27.3 40.88
Domain-Cosine-Top-500k 52.7 58 22 42.5 27.1 40.46
Domain-Finetune-Top-500k 54.8 58.8 | 21.8 | 43.5 27.4 41.26
Domain-Finetune-Positive 55.3 58.7 19.2 | 425 27 40.54
Oracle 56.5 59 159 43 27.3 40.34
All 533 572 | 209 | 42.1 27.6 40.22

Table 6:

SacreBLEU scores for the data selection experiments. Highest scores are marked in bold.




BLEU for all data selection methods is also better
than oracle selection and than training on all the
available data. We perform an analysis on the se-
lected datasets, where we measure the precision
and recall of sentence selection with respect to the
oracle selection. The results are available in Table 7.
As also reflected in the BLEU scores, the Domain-
Finetune method resulted in the highest domain
recall with a minimum of 97.5, while Moore-Lewis
and Domain-Cosine scored 89.4 and 78.8 respec-
tively. We find the results very appealing given that
only 2000 in-domain sentences were used for selec-
tion for each domain out of 1.45 million sentences.

5 Related Work

Previous works used n-gram LMs for data selection
(Moore and Lewis, 2010; Axelrod et al., 2011) or
other count-based methods (Axelrod, 2017; Ponce-
las et al., 2018; Parcheta et al., 2018; Santamaria
and Axelrod, 2019). While such methods work
well in practice, they cannot generalize beyond the
N-grams observed in the in-domain datasets, which
are usually small. Duh et al. (2013) proposed to
replace n-gram models with RNN-based LMs with
notable improvements. However, such methods do
not capture the rich sentence-level global context
as in the recent self-attention-based MLMs; as we
showed in the clustering experiments, autoregres-
sive neural LMs were inferior to masked LMs in
clustering the data by domain. In addition, training
very large neural LMs may be prohibitive without
relying on pre-training. Regarding domain cluster-
ing for MT, Hasler et al. (2014) discovers topics
using LDA instead of using domain labels. Cuong
et al. (2016) induce latent subdomains from the
training data using a dedicated probabilistic model.
Regarding vector-based data selection, Ruder and
Plank (2017) learn to select data using Bayesian op-
timization, and explored word2vec for that purpose.
Duma and Menzel (2016) create paragraph vectors
for data selection in the context of SMT. Wang et al.
(2017) use internal representations from the NMT
model to perform data selection. Bapna and Fi-
rat (2019) propose a mechanism for incorporating
retrieved sentences for each instance for domain
adaptation in NMT, using representations extracted
from a pre-trained NMT model. Farajian et al.
(2017) explored instance-based data selection in a
multi-domain scenario using information retrieval
methods. Dou et al. (2019a) adapts multi-domain
NMT models with domain-aware feature embed-
dings, which are learned via an auxiliary language

Moore-Lewis D-Cosine D-Finetune

P r P r P r
Medical | 0.476 | 0.955 | 0.391 | 0.788 | 0.485 | 0.975
Law 0.836 | 0.894 | 0.841 | 0.899 | 0.902 | 0.965
Koran 0.35 | 0985 | 0.36 | 0989 | 0.36 | 0.998
1T 0.441 | 0.985 | 0.382 | 0.857 | 0.447 | 0.998
Subtitles | 0.899 | 0.899 | 0.916 | 0.916 | 0.957 | 0.957
Average 0.6 0.944 | 0.578 | 0.89 0.63 | 0.979

Table 7: Precision (p) and recall (r) for data selection
of 500k sentences with respect to the oracle selection.

modeling task. Peris et al. (2017) proposed neural-
network based classifiers for data selection in SMT.
For more related work on data selection and domain
adaptation in the context of MT, see the surveys by
Eetemadi et al. (2015) and Chu and Wang (2018).
Unrelated to MT, Ma et al. (2019) used BERT to
select data for tasks from the GLUE benchmark
(Wang et al., 2018). However, they assumed super-
vision for all the different tasks/domains, while we
propose an unsupervised method requiring only a
small set of in-domain data.

While previous work made important contribu-
tions to domain data selection, our work is the first
to explore massive pretrained language models for
both unsupervised domain clustering and for data
selection in NMT.

6 Conclusions and Future Work

We showed that massive pre-trained language mod-
els are highly effective in mapping data to domains
in a fully-unsupervised manner using average-
pooled sentence representations and GMM-based
clustering. We suggest that such clusters are a more
appropriate, data driven approach to domains in nat-
ural language than simplistic labels (e.g. “medical
text”), and that it will improve over time as better
and larger pretrained LMs will become available.
We proposed new methods to harness this prop-
erty for domain data selection using distance-based
ranking in vector space and pretrained LM fine-
tuning, requiring only a small set of in-domain data.
We demonstrated the effectiveness of our methods
on a new, improved data split we created for a pre-
viously studied multi-domain machine translation
benchmark. Our methods perform similarly or bet-
ter than an established data selection method and
oracle in-domain training across all five domains
in the benchmark.

This work just scratches the surface with what
can be done on the subject; possible avenues for
future work include extending this with multilin-
gual selection and multilingual LMs (Conneau and
Lample, 2019; Conneau et al., 2019; Wu et al.,,



2019), using such selection methods with domain-
curriculum training (Zhang et al., 2019; Wang et al.,
2019b), applying them on noisy, web-crawled data
(Junczys-Dowmunt, 2018) or for additional tasks.
We hope this work will encourage more research
on finding the right data for the task, towards more
efficient and robust NLP.
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A Appendix

A.1 NMT Training

Figure 4 details the hyperparameter configuration
we used to train the NMT models. We use Trans-
former models (Vaswani et al., 2017) in the Base
configuration using the implementation provided
in Fairseq (Ott et al., 2019). For all models we
use a joint BPE vocabulary (Sennrich et al., 2016)
learned with 32k merge operations over the con-
catenated corpus in both languages, enabling to tie
all the embedding layers (Press and Wolf, 2017).°
We perform early stopping if the BLEU score on
the domain-specific development set did not im-
prove in 10 consequent checkpoints. We use the
ADAM (Kingma and Ba, 2014) optimizer with an
initial learning rate of 5 - 1074 and a maximum
of 4096 tokens per batch. We trained all models
on a single NVIDIA GPU. We decode using beam
search with a beam size of 5. For pre-processing
we used the Moses (Koehn et al., 2007) pipeline in-
cluding tokenization, normalize-punctuation, non-
printing character removal, truecasing and cleaning.
We removed examples with sequences longer than
100 tokens from the training data (before subword
segmentation).

A.2 Data Split

Table 8 shows details about the overlap between the
training, development and test sets for the different
data splits of the multi-domain dataset. The overlap
was computed using the English part of the corpus.

A.3 GMM Clustering

We learn GMMs with full covariance matrices, i.e.
without constraints on covariance matrices that de-
termine the shape of each component in the mix-
ture, as implemented in scikit-learn (Pedregosa
et al., 2011). We train the models until conver-
gence or for a maximum of 150 EM iterations.

A.4 Language Model Finetuning

We fine-tune the binary classification head for 5
epochs. We use the ADAM (Kingma and Ba, 2014)
optimizer with an initial learning rate of 2 - 107 5.
We train the model using 4 NVIDIA GPUs with
256 sentences per batch (64 per GPU).

“We used the implementation in https://github.

com/rsennrich/subword-nmt

CUDA_VISIBLE_DEVICES=0 \

python $FAIRSEQ_PATH/train.py ${BINARIZED_DATA_DIR} \
——arch transformer_wmt_en_de \
--share-all-embeddings \
--optimizer adam \
—-adam-betas ’ (0.9, 0.98)’ \
--clip-norm 1.0 \
-=1lr 0.0005 \
—-lr-scheduler inverse_sqgrt \
--warmup-updates 4000 \
--warmup-init-1lr le-07 \
—--dropout 0.2 \
—--weight-decay 0.0 \
—-criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 4096 \
--update-freq 5 \
——attention-dropout 0.2 \
—--activation-dropout 0.2 \
—--max-epoch 200 \
--seed 17 \
-s $src \
-t $tgt \
—--save-dir $SMODEL_PATH \
—--save-interval-updates 10000 \
--validate-interval 1

Figure 4: The hyperparameter configuration we used
for NMT model training using Fairseq (Ott et al.,
2019).

A.5 Moore-Lewis Implementation

We used the implementation of Moore and
Lewis (2010) by Pamela Shapiro, as avail-
able in: https://github.com/pamelashapiro/
moore-lewis. This implementation uses the
KenLLM N-Gram language model toolkit (Heafield,
2011).

A.6 Additional Visualizations

Figure 5 shows visualizations of the multi-domain
dataset from additional pre-trained masked lan-
guage models (BERT large and RoBERTa), and
Figure 6 shows the same visualization for autore-
gressive models (XLNet and GPT2).



Koehn and Knowles (2017) | Miiller et al. (2019) | New Split
Medical 1090/2000 (54.5%) 1204/2000 (60.2%) 0/2000
% dev Kor.an 072000 1926/2000 (96.3) 072000
in train Subtitles 1183/5000 (23.66%) 638/2000 (31.9%) 072000
Law 59572000 (29.75%) 100072000 (50%) 072000
1T 2496/2526 (98.81%) 783/2000 (39.15%) 0/2000
Medical 571/2000 (28.55%) 516/1691 (30.51%) 072000
% test Ko;an 072000 194972000 (97.45%) 072000
in train Subtitles 451/5000 (9.02%) 478/2000 (23.9%) 072000
Law 649/2000 (32.45%) 966/2000 (48.3%) 072000
1T 945/1856 (50.92%) 1036/2000 (51.8%) 072000

Table 8: Details about the different data splits for the multi-domain corpus.
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Figure 5: 2D visualizations of the unsupervised GMM-based clustering for different pretrained MLM:s.
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Figure 6: 2D visualizations of the unsupervised GMM-based clustering for different pretrained auto-regressive
LMs.



Chapter 8
Conclusions

In this chapter I summarize the contributions described in this thesis, and present

open issues and the way forward to addressing them.

8.1 Linguistically Inspired Neural Architectures

In Chapter 3, I presented neural architectures for sequence-to-sequence learn-
ing that were motivated by the monotonic relation between the characters in
a word and its inflections. These “Hard-Attention” models were adopted by
the community as a strong tool for morphological inflection generation (Gor-
man et al., 2019), lemmatization (Sahin and Gurevych, 2019), surface realization
(Puzikov et al., 2019), and machine translation (Press and Smith, 2018), among
others. They were also extended to non-monotonic scenarios (Wu et al., 2018a)
and to exact inference (Wu and Cotterell, 2019). Our models were improved fur-
ther resulting in the winning submissions for the 2017 CoNLL shared task on
morphological reinflection (Makarov et al., 2017; Cotterell et al., 2017) and the
2018 CoNLL shared task on Universal Morphological Reinflection (Makarov
and Clematide, 2018; Cotterell et al., 2018).

The success and proliferation of our linguistically motivated neural models
for sequence-to-sequence learning encourages future research in this direction.
Possible avenues for future research may include applying hard attention to
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self-attention based models (Vaswani et al., 2017), which are the architectures
that drive the wave of recent state-of-the-art pre-trained language models De-
vlin et al. (2018).

8.2 Injecting Linguistic Knowledge in Neural Mod-

els using Syntactic Linearization

In Chapter 4 I suggested to incorporate linguistic information in neural sequence-
to-sequence models for machine translation by linearizing constituency trees.
This approach enables to inject syntactic information to such models without
changing the underlying architecture, which is very convenient given the large
and growing numbers of new methods and implementations for sequence-to-
sequence learning. This work and others initiated a line of work on repre-
senting syntactic trees and trees in general using neural sequence to sequence
models. Some examples include dependency-based NMT (Wu et al., 2018b),
syntactically supervised transformers for faster NMT (Akoury et al., 2019), and
Forest-based NMT Ma et al. (2018). Regarding tasks other than MT, examples
include translating between different semantic formalisms (Stanovsky and Da-

gan, 2018), code generation (Alon et al., 2019) and response generation Du and
Black (2019).

While using syntactic information in machine translation and other NLP ap-
plications is still an active line of work, state-of-art systems in MT do not utilize
such supervision (Barrault et al., 2019). Having said that, using syntax may have
other appealing properties like controlling the output of text generation systems
using linearized trees (Iyyer et al., 2018), generating diverse translations (Yang
etal., 2019) and making translation faster Akoury et al. (2019), which makes this
an exciting direction for future work.
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8.3 Understanding the Weaknesses of Neural Text

Generation Models

In Chapter 5 I propose better modeling and evaluation for the Split and Rephrase
task (Narayan et al., 2017). The proposed improvements stemmed from an anal-
ysis of how the neural attention-based sequence-to-sequence models generate
the output: I noticed that the attention mechanism consistently focused on a sin-
gle entity while generating multiple output sentences, which raised suspicions
regarding how the model learned to generate. We indeed showed that the model
memorized entity-sentence pairs by introducing the model with adversarial ex-
amples which raises an important concern when using such models, especially
with synthetically generated data. A consequent work by Botha et al. (2018)
created a larger, more natural dataset for the task. While using our proposed
modeling recipes, they greatly improved the performance on the task, showing
that the original dataset was too synthetic to enable proper modeling.

To avoid such modeling deficiencies, it is important to be aware of how the
dataset was created, to make sure we are modeling what we intend to model
(Geva et al., 2019). These issues also call for better evaluation metrics for text
generation or simplification tasks (Sulem et al., 2018), and experimental settings
targeting rare words and other cases that require generalization (Shimorina and
Gardent, 2018).

8.4 The Benefits of Massively Multilingual
Modeling

In Chapter 6 I investigated scaling neural machine translation models to mas-
sively multilingual scenarios, involving up to 103 languages and 95.8 parallel
sentences. I showed that training such models is highly effective for improving
the performance on low-resource language pairs, resulting in state-of-the-art re-
sults on the publicly available TED talks dataset. I then conducted large-scale
experiments pointing at the trade-off between the degradation in supervised
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translation quality due to the bottleneck caused by scaling to numerous lan-
guages vs. improved generalization abilities in zero-shot translation as we in-
creasing the number of languages.

While this work was the first to scale NMT models to such settings, many
subsequent works now train massively multilingual language models that en-
able cross-lingual transfer learning, for better NLP in under-resourced languages
(Devlin et al., 2019; Conneau et al., 2019; Siddhant et al., 2019). Other subse-
quent works investigate scaling such models even further in terms of the num-
ber of parameters and training examples (Arivazhagan et al., 2019) and ana-
lyzed the emerging language families within their learned representations with
respect to linguistic theories on the subject (Kudugunta et al., 2019). Improving
such models and making them available to the public is of very high impor-
tance and has global impact, as most of the current research on NLP is mainly
focused on English (Bender, 2019).

8.5 Domain Data Selection with Massive Language
Models

In Chapter 7 I show that massive pretrained language models are effective in
clustering textual data to domains in a fully-unsupervised manner. I then show
how to harness this property for training domain-specific machine translation
models by performing domain data-selection. The proposed approach is not
specific to machine translation, and can be used for any NLP task that would

benefit from in-domain data.

This work is the first to exploit large pre-trained language models for do-
main data-selection; I would like to expand this to additional tasks and multi-
lingual scenarios, as using proper in-domain data is crucial for building high-
quality NLP systems in the real-world. While this work is still in submission
while writing these lines, I expect the ideas it includes will aid future work
on domain adaptation, especially in the current era where pretrained language
models are one of the most common tools in the NLP practitioner’s toolbox.
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8.6 Going Forward

While we have witnessed great progress in the last few years regarding sequence-
to-sequence learning in NLP, there are still several key subjects which I find
important and that should be studied further.

8.6.1 Modeling Uncertainty

While neural sequence-to-sequence learning is very successful as a general tool
for NLP tasks, this approach is hard to interpret when compared to the previ-
ously dominant phrase-based statistical machine translation methods (Koehn,
2016). In the previous methods, one could inspect the learned phrase-tables
(which are essentially probabilistic dictionaries mapping words and phrases in
the source language to words and phrases in the target) in order to reason about
the different choices the model takes during translation. However, NMT mod-
els are composed of many millions of parameters, making it much harder to

understand their inner-workings when generating an output for a given input.

This issue is very critical for improving these models further, as it is cur-
rently hard to understand or predict where and why current state-of-the-art
models break. Common evaluation methods today rely on automatic metrics
(e.g. BLEU (Papineni et al., 2002) or METEOR (Denkowski and Lavie, 2011))
over small human-generated test-sets which are hard and expensive to create,
and may not represent the distribution of the system inputs when deployed in
production settings.

It would be useful to propose methods for quantifying uncertainty in NMT
models and investigate whether we can find uncertainty measures which are
based solely on the model itself and unlabeled data, enabling cheap, large scale
evaluation. I believe that there is enough “attack surface” to utilize for that pur-
pose, e.g. the model parameters (and specifically the word embedding matri-
ces), the intermediate representations the model computes, the search space the
model explores during decoding and the local output distributions the model

computes in each time-step.
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Successfully finding such uncertainty measures will have a great impact on
many down-stream applications. First of all, it will enable to detect and fix
flaws in current models by getting a better understanding of what they learn,
leading to improved NMT systems. It will also enable filtering of noisy corpora
by finding problematic examples that cause uncertainty in the model. Another
application is active learning for NMT, enabling more rapid parallel corpus cre-

ation by pointing on the most relevant examples to be professionally translated.

8.6.2 Finding the Right Data for the Task

Natural language varies greatly across topics, styles, levels of formality, genres
and many other linguistic nuances (van der Wees et al., 2015; van der Wees,
2017; Niu et al., 2017). This overwhelming diversity of language makes it hard
to find the right data for the task, as it is nearly impossible to well-define the ex-
act requirements from such data with respect to all the aforementioned aspects.
On top of that, domain labels are usually unavailable. Related to Section 8.6.1,
a model that was never trained on data from a given domain or one that has
never seen certain linguistic phenomena cannot be expected to succeed in such
scenarios, and should have a high level of uncertainty in its prediction. While
this observation may affect any NLP model and application, not much work is
dedicated to understanding the data distribution in NLP.

Understanding how modern NLP models map data from different domains
to latent neural representations can help us build more robust models, and un-
derstand why and when such models will fail given new unobserved data.
While the work we proposed in Chapter 7 describes one step in this direction,
there are many additional efforts that can be done on the subject, like expand-
ing this to multilingual settings, exploring under-represented data with active
learning, and proposing uncertainty measures based on the learned representa-
tions for the training data. Understanding the data landscape better can also im-
prove unsupervised cross-lingual alignment methods which were shown to be

beneficial for unsupervised neural machine translation (Conneau et al., 2019).
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8.6.3 Distillation, Quantization and Retrieval

for Practical Large-Scale Neural NLP

One particular reason behind the success of neural models for NLP (and specif-
ically neural sequence-to-sequence learning) is the ability to scale such models
to many millions, or even billions, of learned parameters. These large mod-
els facilitate training with very large datasets, while alleviating the parameter
bottleneck (Aharoni et al., 2019). While such large models are very appealing
with respect to their performance on various leader-boards, this scaling comes
at the cost of increased energy consumption and latency due to the large com-
putational costs (Schwartz et al., 2019). While larger and larger models are still
being proposed (Raffel et al., 2019; Huang et al., 2019), many recent works sug-
gest different methods to makes such models smaller and faster with relatively
small losses in performance, if any (Hinton et al., 2015; Kim and Rush, 2016;
Freitag et al., 2017; Tan et al., 2019; Lan et al., 2019).

I strongly believe that research work aiming to explore the model size vs.
performance Pareto, as proposed in recent shared tasks on NMT efficiency (Birch
et al., 2018; Hayashi et al., 2019) is very important for making progress that is
both sustainable and practical for real-world use cases. In addition to distilla-
tion (Sanh et al., 2019) and quantization (Zafrir et al., 2019) efforts, future im-
provements may also stem from non-parametric methods (Gu et al., 2018b; Lee
et al., 2019; Khandelwal et al., 2019) which relax the parameter bottleneck by
adding a retrieval stage for similar examples when processing new inputs.
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